![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xp01disj | Structured version Visualization version GIF version |
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by NM, 2-Jun-2007.) |
Ref | Expression |
---|---|
xp01disj | ⊢ ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 8525 | . . 3 ⊢ 1o ≠ ∅ | |
2 | 1 | necomi 2993 | . 2 ⊢ ∅ ≠ 1o |
3 | xpsndisj 6185 | . 2 ⊢ (∅ ≠ 1o → ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ≠ wne 2938 ∩ cin 3962 ∅c0 4339 {csn 4631 × cxp 5687 1oc1o 8498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-suc 6392 df-1o 8505 |
This theorem is referenced by: endisj 9097 |
Copyright terms: Public domain | W3C validator |