| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xp01disj | Structured version Visualization version GIF version | ||
| Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by NM, 2-Jun-2007.) |
| Ref | Expression |
|---|---|
| xp01disj | ⊢ ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 8398 | . . 3 ⊢ 1o ≠ ∅ | |
| 2 | 1 | necomi 2982 | . 2 ⊢ ∅ ≠ 1o |
| 3 | xpsndisj 6105 | . 2 ⊢ (∅ ≠ 1o → ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ≠ wne 2928 ∩ cin 3896 ∅c0 4278 {csn 4571 × cxp 5609 1oc1o 8373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-cnv 5619 df-suc 6307 df-1o 8380 |
| This theorem is referenced by: endisj 8972 |
| Copyright terms: Public domain | W3C validator |