MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp01disj Structured version   Visualization version   GIF version

Theorem xp01disj 8264
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by NM, 2-Jun-2007.)
Assertion
Ref Expression
xp01disj ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅

Proof of Theorem xp01disj
StepHypRef Expression
1 1n0 8263 . . 3 1o ≠ ∅
21necomi 2998 . 2 ∅ ≠ 1o
3 xpsndisj 6054 . 2 (∅ ≠ 1o → ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅)
42, 3ax-mp 5 1 ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wne 2943  cin 3883  c0 4254  {csn 4558   × cxp 5577  1oc1o 8237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ne 2944  df-ral 3069  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5585  df-rel 5586  df-cnv 5587  df-suc 6254  df-1o 8244
This theorem is referenced by:  endisj  8776
  Copyright terms: Public domain W3C validator