Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrninxp Structured version   Visualization version   GIF version

Theorem xrninxp 35644
Description: Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 7-Apr-2020.)
Assertion
Ref Expression
xrninxp ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨⟨𝑦, 𝑧⟩, 𝑢⟩ ∣ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))}
Distinct variable groups:   𝑢,𝐴,𝑦,𝑧   𝑢,𝐵,𝑦,𝑧   𝑢,𝐶,𝑦,𝑧   𝑢,𝑅,𝑦,𝑧   𝑢,𝑆,𝑦,𝑧

Proof of Theorem xrninxp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inxp2 35623 . . 3 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨𝑢, 𝑥⟩ ∣ ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥)}
2 df-3an 1085 . . . . 5 ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑢(𝑅𝑆)𝑥) ↔ ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥))
3 3anan12 1092 . . . . 5 ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑢(𝑅𝑆)𝑥) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥)))
42, 3bitr3i 279 . . . 4 (((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥)))
54opabbii 5136 . . 3 {⟨𝑢, 𝑥⟩ ∣ ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥)} = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
61, 5eqtri 2847 . 2 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
7 cnvopab 6000 . 2 {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))} = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
8 breq2 5073 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑢(𝑅𝑆)𝑥𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))
98anbi2d 630 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑢𝐴𝑢(𝑅𝑆)𝑥) ↔ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩)))
109dfoprab4 7756 . . 3 {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))} = {⟨⟨𝑦, 𝑧⟩, 𝑢⟩ ∣ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))}
1110cnveqi 5748 . 2 {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))} = {⟨⟨𝑦, 𝑧⟩, 𝑢⟩ ∣ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))}
126, 7, 113eqtr2i 2853 1 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨⟨𝑦, 𝑧⟩, 𝑢⟩ ∣ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))}
Colors of variables: wff setvar class
Syntax hints:  wa 398  w3a 1083   = wceq 1536  wcel 2113  cin 3938  cop 4576   class class class wbr 5069  {copab 5131   × cxp 5556  ccnv 5557  {coprab 7160  cxrn 35456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-iota 6317  df-fun 6360  df-fv 6366  df-oprab 7163  df-1st 7692  df-2nd 7693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator