| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrninxp | Structured version Visualization version GIF version | ||
| Description: Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 7-Apr-2020.) |
| Ref | Expression |
|---|---|
| xrninxp | ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = ◡{〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inxp2 38394 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {〈𝑢, 𝑥〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥)} | |
| 2 | df-3an 1088 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥)) | |
| 3 | 3anan12 1095 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))) | |
| 4 | 2, 3 | bitr3i 277 | . . . 4 ⊢ (((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))) |
| 5 | 4 | opabbii 5158 | . . 3 ⊢ {〈𝑢, 𝑥〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥)} = {〈𝑢, 𝑥〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} |
| 6 | 1, 5 | eqtri 2754 | . 2 ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {〈𝑢, 𝑥〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} |
| 7 | cnvopab 6084 | . 2 ⊢ ◡{〈𝑥, 𝑢〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} = {〈𝑢, 𝑥〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} | |
| 8 | breq2 5095 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝑢(𝑅 ⋉ 𝑆)𝑥 ↔ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉)) | |
| 9 | 8 | anbi2d 630 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ((𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥) ↔ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))) |
| 10 | 9 | dfoprab4 7987 | . . 3 ⊢ {〈𝑥, 𝑢〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} = {〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} |
| 11 | 10 | cnveqi 5814 | . 2 ⊢ ◡{〈𝑥, 𝑢〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} = ◡{〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} |
| 12 | 6, 7, 11 | 3eqtr2i 2760 | 1 ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = ◡{〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 〈cop 4582 class class class wbr 5091 {copab 5153 × cxp 5614 ◡ccnv 5615 {coprab 7347 ⋉ cxrn 38213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-oprab 7350 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |