Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrninxp Structured version   Visualization version   GIF version

Theorem xrninxp 38363
Description: Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 7-Apr-2020.)
Assertion
Ref Expression
xrninxp ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨⟨𝑦, 𝑧⟩, 𝑢⟩ ∣ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))}
Distinct variable groups:   𝑢,𝐴,𝑦,𝑧   𝑢,𝐵,𝑦,𝑧   𝑢,𝐶,𝑦,𝑧   𝑢,𝑅,𝑦,𝑧   𝑢,𝑆,𝑦,𝑧

Proof of Theorem xrninxp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inxp2 38334 . . 3 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨𝑢, 𝑥⟩ ∣ ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥)}
2 df-3an 1088 . . . . 5 ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑢(𝑅𝑆)𝑥) ↔ ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥))
3 3anan12 1095 . . . . 5 ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑢(𝑅𝑆)𝑥) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥)))
42, 3bitr3i 277 . . . 4 (((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥)))
54opabbii 5162 . . 3 {⟨𝑢, 𝑥⟩ ∣ ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥)} = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
61, 5eqtri 2752 . 2 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
7 cnvopab 6090 . 2 {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))} = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
8 breq2 5099 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑢(𝑅𝑆)𝑥𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))
98anbi2d 630 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑢𝐴𝑢(𝑅𝑆)𝑥) ↔ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩)))
109dfoprab4 7997 . . 3 {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))} = {⟨⟨𝑦, 𝑧⟩, 𝑢⟩ ∣ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))}
1110cnveqi 5821 . 2 {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))} = {⟨⟨𝑦, 𝑧⟩, 𝑢⟩ ∣ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))}
126, 7, 113eqtr2i 2758 1 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨⟨𝑦, 𝑧⟩, 𝑢⟩ ∣ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))}
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3904  cop 4585   class class class wbr 5095  {copab 5157   × cxp 5621  ccnv 5622  {coprab 7354  cxrn 38153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fv 6494  df-oprab 7357  df-1st 7931  df-2nd 7932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator