| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrninxp | Structured version Visualization version GIF version | ||
| Description: Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 7-Apr-2020.) |
| Ref | Expression |
|---|---|
| xrninxp | ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = ◡{〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inxp2 38368 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {〈𝑢, 𝑥〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥)} | |
| 2 | df-3an 1089 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥)) | |
| 3 | 3anan12 1096 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))) | |
| 4 | 2, 3 | bitr3i 277 | . . . 4 ⊢ (((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))) |
| 5 | 4 | opabbii 5210 | . . 3 ⊢ {〈𝑢, 𝑥〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥)} = {〈𝑢, 𝑥〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} |
| 6 | 1, 5 | eqtri 2765 | . 2 ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {〈𝑢, 𝑥〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} |
| 7 | cnvopab 6157 | . 2 ⊢ ◡{〈𝑥, 𝑢〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} = {〈𝑢, 𝑥〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} | |
| 8 | breq2 5147 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝑢(𝑅 ⋉ 𝑆)𝑥 ↔ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉)) | |
| 9 | 8 | anbi2d 630 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ((𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥) ↔ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))) |
| 10 | 9 | dfoprab4 8080 | . . 3 ⊢ {〈𝑥, 𝑢〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} = {〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} |
| 11 | 10 | cnveqi 5885 | . 2 ⊢ ◡{〈𝑥, 𝑢〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} = ◡{〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} |
| 12 | 6, 7, 11 | 3eqtr2i 2771 | 1 ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = ◡{〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∩ cin 3950 〈cop 4632 class class class wbr 5143 {copab 5205 × cxp 5683 ◡ccnv 5684 {coprab 7432 ⋉ cxrn 38181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fv 6569 df-oprab 7435 df-1st 8014 df-2nd 8015 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |