![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrninxp | Structured version Visualization version GIF version |
Description: Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 7-Apr-2020.) |
Ref | Expression |
---|---|
xrninxp | ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = ◡{〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inxp2 38323 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {〈𝑢, 𝑥〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥)} | |
2 | df-3an 1089 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥)) | |
3 | 3anan12 1096 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))) | |
4 | 2, 3 | bitr3i 277 | . . . 4 ⊢ (((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))) |
5 | 4 | opabbii 5233 | . . 3 ⊢ {〈𝑢, 𝑥〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥)} = {〈𝑢, 𝑥〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} |
6 | 1, 5 | eqtri 2768 | . 2 ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {〈𝑢, 𝑥〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} |
7 | cnvopab 6169 | . 2 ⊢ ◡{〈𝑥, 𝑢〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} = {〈𝑢, 𝑥〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} | |
8 | breq2 5170 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝑢(𝑅 ⋉ 𝑆)𝑥 ↔ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉)) | |
9 | 8 | anbi2d 629 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ((𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥) ↔ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))) |
10 | 9 | dfoprab4 8096 | . . 3 ⊢ {〈𝑥, 𝑢〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} = {〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} |
11 | 10 | cnveqi 5899 | . 2 ⊢ ◡{〈𝑥, 𝑢〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} = ◡{〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} |
12 | 6, 7, 11 | 3eqtr2i 2774 | 1 ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = ◡{〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 〈cop 4654 class class class wbr 5166 {copab 5228 × cxp 5698 ◡ccnv 5699 {coprab 7449 ⋉ cxrn 38134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-oprab 7452 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |