| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrninxp | Structured version Visualization version GIF version | ||
| Description: Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 7-Apr-2020.) |
| Ref | Expression |
|---|---|
| xrninxp | ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = ◡{〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inxp2 38349 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {〈𝑢, 𝑥〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥)} | |
| 2 | df-3an 1088 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥)) | |
| 3 | 3anan12 1095 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))) | |
| 4 | 2, 3 | bitr3i 277 | . . . 4 ⊢ (((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))) |
| 5 | 4 | opabbii 5174 | . . 3 ⊢ {〈𝑢, 𝑥〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥)} = {〈𝑢, 𝑥〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} |
| 6 | 1, 5 | eqtri 2752 | . 2 ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {〈𝑢, 𝑥〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} |
| 7 | cnvopab 6110 | . 2 ⊢ ◡{〈𝑥, 𝑢〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} = {〈𝑢, 𝑥〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} | |
| 8 | breq2 5111 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝑢(𝑅 ⋉ 𝑆)𝑥 ↔ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉)) | |
| 9 | 8 | anbi2d 630 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ((𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥) ↔ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))) |
| 10 | 9 | dfoprab4 8034 | . . 3 ⊢ {〈𝑥, 𝑢〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} = {〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} |
| 11 | 10 | cnveqi 5838 | . 2 ⊢ ◡{〈𝑥, 𝑢〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} = ◡{〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} |
| 12 | 6, 7, 11 | 3eqtr2i 2758 | 1 ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = ◡{〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 〈cop 4595 class class class wbr 5107 {copab 5169 × cxp 5636 ◡ccnv 5637 {coprab 7388 ⋉ cxrn 38168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-oprab 7391 df-1st 7968 df-2nd 7969 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |