NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  idkex GIF version

Theorem idkex 4315
Description: The Kuratowski identity relationship is a set. (Contributed by SF, 14-Jan-2015.)
Assertion
Ref Expression
idkex Ik V

Proof of Theorem idkex
StepHypRef Expression
1 dfidk2 4314 . 2 Ik = ( Skk Sk )
2 ssetkex 4295 . . 3 Sk V
32cnvkex 4288 . . 3 k Sk V
42, 3inex 4106 . 2 ( Skk Sk ) V
51, 4eqeltri 2423 1 Ik V
Colors of variables: wff setvar class
Syntax hints:   wcel 1710  Vcvv 2860  cin 3209  kccnvk 4176   Sk cssetk 4184   Ik cidk 4185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-sset 4083  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-opk 4059  df-xpk 4186  df-cnvk 4187  df-ssetk 4194  df-idk 4196
This theorem is referenced by:  nnsucelrlem1  4425  nndisjeq  4430  tfinrelkex  4488  oddfinex  4505  evenodddisjlem1  4516  phiexg  4572  opexg  4588  proj1exg  4592  proj2exg  4593  setconslem5  4736  1stex  4740  swapex  4743
  Copyright terms: Public domain W3C validator