New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > uniexg | GIF version |
Description: The sum class of a set is a set. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
uniexg | ⊢ (A ∈ V → ∪A ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfuni3 4316 | . 2 ⊢ ∪A = ⋃1(◡k Sk “k A) | |
2 | ssetkex 4295 | . . . . 5 ⊢ Sk ∈ V | |
3 | 2 | cnvkex 4288 | . . . 4 ⊢ ◡k Sk ∈ V |
4 | imakexg 4300 | . . . 4 ⊢ ((◡k Sk ∈ V ∧ A ∈ V) → (◡k Sk “k A) ∈ V) | |
5 | 3, 4 | mpan 651 | . . 3 ⊢ (A ∈ V → (◡k Sk “k A) ∈ V) |
6 | uni1exg 4293 | . . 3 ⊢ ((◡k Sk “k A) ∈ V → ⋃1(◡k Sk “k A) ∈ V) | |
7 | 5, 6 | syl 15 | . 2 ⊢ (A ∈ V → ⋃1(◡k Sk “k A) ∈ V) |
8 | 1, 7 | syl5eqel 2437 | 1 ⊢ (A ∈ V → ∪A ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 Vcvv 2860 ∪cuni 3892 ⋃1cuni1 4134 ◡kccnvk 4176 “k cimak 4180 Sk cssetk 4184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-uni 3893 df-opk 4059 df-1c 4137 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-imak 4190 df-p6 4192 df-sik 4193 df-ssetk 4194 |
This theorem is referenced by: uniex 4318 pw1exb 4327 |
Copyright terms: Public domain | W3C validator |