NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  uniexg GIF version

Theorem uniexg 4317
Description: The sum class of a set is a set. (Contributed by SF, 14-Jan-2015.)
Assertion
Ref Expression
uniexg (A VA V)

Proof of Theorem uniexg
StepHypRef Expression
1 dfuni3 4316 . 2 A = ⋃1(k Skk A)
2 ssetkex 4295 . . . . 5 Sk V
32cnvkex 4288 . . . 4 k Sk V
4 imakexg 4300 . . . 4 ((k Sk V A V) → (k Skk A) V)
53, 4mpan 651 . . 3 (A V → (k Skk A) V)
6 uni1exg 4293 . . 3 ((k Skk A) V → ⋃1(k Skk A) V)
75, 6syl 15 . 2 (A V → ⋃1(k Skk A) V)
81, 7syl5eqel 2437 1 (A VA V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710  Vcvv 2860  cuni 3892  1cuni1 4134  kccnvk 4176  k cimak 4180   Sk cssetk 4184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-uni 3893  df-opk 4059  df-1c 4137  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-imak 4190  df-p6 4192  df-sik 4193  df-ssetk 4194
This theorem is referenced by:  uniex  4318  pw1exb  4327
  Copyright terms: Public domain W3C validator