New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > proj1eq | GIF version |
Description: Equality theorem for first projection operator. (Contributed by SF, 2-Jan-2015.) |
Ref | Expression |
---|---|
proj1eq | ⊢ (A = B → Proj1 A = Proj1 B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imakeq2 4226 | . 2 ⊢ (A = B → (◡kImagek((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k A) = (◡kImagek((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k B)) | |
2 | dfproj12 4577 | . 2 ⊢ Proj1 A = (◡kImagek((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k A) | |
3 | dfproj12 4577 | . 2 ⊢ Proj1 B = (◡kImagek((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k B) | |
4 | 1, 2, 3 | 3eqtr4g 2410 | 1 ⊢ (A = B → Proj1 A = Proj1 B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 Vcvv 2860 ∼ ccompl 3206 ∖ cdif 3207 ∪ cun 3208 ∩ cin 3209 ⊕ csymdif 3210 1cc1c 4135 ℘1cpw1 4136 ×k cxpk 4175 ◡kccnvk 4176 Ins2k cins2k 4177 Ins3k cins3k 4178 “k cimak 4180 SIk csik 4182 Imagekcimagek 4183 Sk cssetk 4184 Ik cidk 4185 Nn cnnc 4374 Proj1 cproj1 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-pw1 4138 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-phi 4566 df-proj1 4568 |
This theorem is referenced by: opth 4603 |
Copyright terms: Public domain | W3C validator |