New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opex | GIF version |
Description: An ordered pair of two sets is a set. (Contributed by SF, 5-Jan-2015.) |
Ref | Expression |
---|---|
opex.1 | ⊢ A ∈ V |
opex.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
opex | ⊢ 〈A, B〉 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex.1 | . 2 ⊢ A ∈ V | |
2 | opex.2 | . 2 ⊢ B ∈ V | |
3 | opexg 4588 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → 〈A, B〉 ∈ V) | |
4 | 1, 2, 3 | mp2an 653 | 1 ⊢ 〈A, B〉 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2860 〈cop 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 |
This theorem is referenced by: opabid 4696 elopab 4697 opabn0 4717 el1st 4730 setconslem6 4737 elswap 4741 raliunxp 4824 ssopr 4847 br1st 4859 br2nd 4860 brswap2 4861 intirr 5030 dmsnn0 5065 dmsnopg 5067 cnvsn 5074 opswap 5075 rnsnop 5076 dfcnv2 5101 df2nd2 5112 cnviin 5119 nfunv 5139 funsn 5148 fnasrn 5418 fsn 5433 fvsn 5446 brswap 5510 opfv1st 5515 opfv2nd 5516 oprabid 5551 dfoprab2 5559 rnoprab 5577 otelins2 5792 otelins3 5793 brimage 5794 oqelins4 5795 dmtxp 5803 otsnelsi3 5806 releqel 5808 releqmpt2 5810 composeex 5821 disjex 5824 addcfnex 5825 braddcfn 5827 funsex 5829 dmpprod 5841 fnfullfunlem1 5857 brfullfunop 5868 ranfnex 5872 transex 5911 refex 5912 antisymex 5913 connexex 5914 foundex 5915 extex 5916 symex 5917 qsexg 5983 xpassen 6058 enpw1lem1 6062 enmap2lem1 6064 enmap1lem1 6070 enprmaplem1 6077 ovmuc 6131 ovcelem1 6172 ceex 6175 tcfnex 6245 csucex 6260 addccan2nclem1 6264 nncdiv3lem1 6276 nncdiv3lem2 6277 nnc3n3p1 6279 spacvallem1 6282 nchoicelem10 6299 nchoicelem16 6305 frecxp 6315 dmfrec 6317 |
Copyright terms: Public domain | W3C validator |