New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > uni1ex | GIF version |
Description: The unit union operator preserves sethood. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
uni1ex.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
uni1ex | ⊢ ⋃1A ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uni1ex.1 | . 2 ⊢ A ∈ V | |
2 | uni1exg 4292 | . 2 ⊢ (A ∈ V → ⋃1A ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ⋃1A ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2859 ⋃1cuni1 4133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-sn 3741 df-pr 3742 df-uni 3892 df-opk 4058 df-1c 4136 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-p6 4191 |
This theorem is referenced by: ncfinraiselem2 4480 nnpweqlem1 4522 sfintfinlem1 4531 tfinnnlem1 4533 vfinspclt 4552 1stex 4739 ssetex 4744 enpw1lem1 6061 nenpw1pwlem1 6084 nmembers1lem1 6268 nchoicelem16 6304 nchoicelem18 6306 |
Copyright terms: Public domain | W3C validator |