MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreulem1 Structured version   Visualization version   GIF version

Theorem 2sqreulem1 26022
Description: Lemma 1 for 2sqreu 26032. (Contributed by AV, 4-Jun-2023.)
Assertion
Ref Expression
2sqreulem1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Distinct variable group:   𝑃,𝑎,𝑏

Proof of Theorem 2sqreulem1
Dummy variables 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqnn0 26014 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
2 simpll 765 . . . . . . . . 9 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → 𝑥 ∈ ℕ0)
32adantl 484 . . . . . . . 8 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → 𝑥 ∈ ℕ0)
4 breq1 5069 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑎𝑏𝑥𝑏))
5 oveq1 7163 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝑎↑2) = (𝑥↑2))
65oveq1d 7171 . . . . . . . . . . . 12 (𝑎 = 𝑥 → ((𝑎↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑏↑2)))
76eqeq1d 2823 . . . . . . . . . . 11 (𝑎 = 𝑥 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑥↑2) + (𝑏↑2)) = 𝑃))
84, 7anbi12d 632 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃)))
98reubidv 3389 . . . . . . . . 9 (𝑎 = 𝑥 → (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃)))
109adantl 484 . . . . . . . 8 (((𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) ∧ 𝑎 = 𝑥) → (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃)))
11 simpr 487 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
1211adantr 483 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) → 𝑦 ∈ ℕ0)
13 breq2 5070 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑦 → (𝑥𝑏𝑥𝑦))
14 oveq1 7163 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑦 → (𝑏↑2) = (𝑦↑2))
1514oveq2d 7172 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑦 → ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))
1615eqeq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑦 → (((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))))
1713, 16anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑦 → ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2)))))
18 equequ1 2032 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑦 → (𝑏 = 𝑐𝑦 = 𝑐))
1918imbi2d 343 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑦 → (((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)))
2019ralbidv 3197 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑦 → (∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)))
2117, 20anbi12d 632 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦 → (((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑥𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))))
2221adantl 484 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑏 = 𝑦) → (((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑥𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))))
23 simpr 487 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) → 𝑥𝑦)
24 eqidd 2822 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) → ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2)))
25 nn0re 11907 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ ℕ0𝑐 ∈ ℝ)
2625resqcld 13612 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ ℕ0 → (𝑐↑2) ∈ ℝ)
2726adantl 484 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) → (𝑐↑2) ∈ ℝ)
28 nn0re 11907 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
2928resqcld 13612 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℕ0 → (𝑦↑2) ∈ ℝ)
3029adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦↑2) ∈ ℝ)
3130ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) → (𝑦↑2) ∈ ℝ)
32 nn0re 11907 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
3332resqcld 13612 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℕ0 → (𝑥↑2) ∈ ℝ)
3433adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥↑2) ∈ ℝ)
3534ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) → (𝑥↑2) ∈ ℝ)
36 readdcan 10814 . . . . . . . . . . . . . . . . . . 19 (((𝑐↑2) ∈ ℝ ∧ (𝑦↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → (((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑐↑2) = (𝑦↑2)))
3727, 31, 35, 36syl3anc 1367 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) → (((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑐↑2) = (𝑦↑2)))
3828ad4antlr 731 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑦↑2)) → 𝑦 ∈ ℝ)
3925ad2antlr 725 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑦↑2)) → 𝑐 ∈ ℝ)
40 nn0ge0 11923 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℕ0 → 0 ≤ 𝑦)
4140ad4antlr 731 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑦↑2)) → 0 ≤ 𝑦)
42 nn0ge0 11923 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ ℕ0 → 0 ≤ 𝑐)
4342ad2antlr 725 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑦↑2)) → 0 ≤ 𝑐)
44 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑦↑2)) → (𝑐↑2) = (𝑦↑2))
4544eqcomd 2827 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑦↑2)) → (𝑦↑2) = (𝑐↑2))
4638, 39, 41, 43, 45sq11d 13622 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑦↑2)) → 𝑦 = 𝑐)
4746ex 415 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) → ((𝑐↑2) = (𝑦↑2) → 𝑦 = 𝑐))
4837, 47sylbid 242 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) → (((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) → 𝑦 = 𝑐))
4948adantld 493 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) → ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))
5049ralrimiva 3182 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) → ∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))
5123, 24, 50jca31 517 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) → ((𝑥𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)))
5212, 22, 51rspcedvd 3626 . . . . . . . . . . . . 13 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) → ∃𝑏 ∈ ℕ0 ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)))
53 breq2 5070 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → (𝑥𝑏𝑥𝑐))
54 oveq1 7163 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑐 → (𝑏↑2) = (𝑐↑2))
5554oveq2d 7172 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑐 → ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑐↑2)))
5655eqeq1d 2823 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → (((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))))
5753, 56anbi12d 632 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)))))
5857reu8 3724 . . . . . . . . . . . . 13 (∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑏 ∈ ℕ0 ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)))
5952, 58sylibr 236 . . . . . . . . . . . 12 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) → ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
6059ex 415 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥𝑦 → ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6160adantr 483 . . . . . . . . . 10 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (𝑥𝑦 → ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6261impcom 410 . . . . . . . . 9 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
63 eqeq2 2833 . . . . . . . . . . . . 13 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (((𝑥↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
6463anbi2d 630 . . . . . . . . . . . 12 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6564reubidv 3389 . . . . . . . . . . 11 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6665adantl 484 . . . . . . . . . 10 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6766adantl 484 . . . . . . . . 9 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → (∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6862, 67mpbird 259 . . . . . . . 8 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃))
693, 10, 68rspcedvd 3626 . . . . . . 7 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
7011adantr 483 . . . . . . . . 9 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → 𝑦 ∈ ℕ0)
7170adantl 484 . . . . . . . 8 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℕ0)
72 breq1 5069 . . . . . . . . . . 11 (𝑎 = 𝑦 → (𝑎𝑏𝑦𝑏))
73 oveq1 7163 . . . . . . . . . . . . 13 (𝑎 = 𝑦 → (𝑎↑2) = (𝑦↑2))
7473oveq1d 7171 . . . . . . . . . . . 12 (𝑎 = 𝑦 → ((𝑎↑2) + (𝑏↑2)) = ((𝑦↑2) + (𝑏↑2)))
7574eqeq1d 2823 . . . . . . . . . . 11 (𝑎 = 𝑦 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑦↑2) + (𝑏↑2)) = 𝑃))
7672, 75anbi12d 632 . . . . . . . . . 10 (𝑎 = 𝑦 → ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃)))
7776reubidv 3389 . . . . . . . . 9 (𝑎 = 𝑦 → (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃)))
7877adantl 484 . . . . . . . 8 (((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) ∧ 𝑎 = 𝑦) → (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃)))
79 simpll 765 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ ¬ 𝑥𝑦) → 𝑥 ∈ ℕ0)
80 breq2 5070 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑥 → (𝑦𝑏𝑦𝑥))
81 oveq1 7163 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑥 → (𝑏↑2) = (𝑥↑2))
8281oveq2d 7172 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑥 → ((𝑦↑2) + (𝑏↑2)) = ((𝑦↑2) + (𝑥↑2)))
8382eqeq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑥 → (((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))))
8480, 83anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑥 → ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2)))))
85 equequ1 2032 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑥 → (𝑏 = 𝑐𝑥 = 𝑐))
8685imbi2d 343 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑥 → (((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)))
8786ralbidv 3197 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑥 → (∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)))
8884, 87anbi12d 632 . . . . . . . . . . . . . . 15 (𝑏 = 𝑥 → (((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑦𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))))
8988adantl 484 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ ¬ 𝑥𝑦) ∧ 𝑏 = 𝑥) → (((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑦𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))))
90 ltnle 10720 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
9128, 32, 90syl2anr 598 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
9228ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 < 𝑥) → 𝑦 ∈ ℝ)
9332ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 < 𝑥) → 𝑥 ∈ ℝ)
94 simpr 487 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 < 𝑥) → 𝑦 < 𝑥)
9592, 93, 94ltled 10788 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 < 𝑥) → 𝑦𝑥)
9695ex 415 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦 < 𝑥𝑦𝑥))
9791, 96sylbird 262 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (¬ 𝑥𝑦𝑦𝑥))
9897imp 409 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ ¬ 𝑥𝑦) → 𝑦𝑥)
9929recnd 10669 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0 → (𝑦↑2) ∈ ℂ)
10099adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦↑2) ∈ ℂ)
10133recnd 10669 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ0 → (𝑥↑2) ∈ ℂ)
102101adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥↑2) ∈ ℂ)
103100, 102addcomd 10842 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2)))
104103adantr 483 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ ¬ 𝑥𝑦) → ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2)))
10534recnd 10669 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥↑2) ∈ ℂ)
106105adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → (𝑥↑2) ∈ ℂ)
10730recnd 10669 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦↑2) ∈ ℂ)
108107adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → (𝑦↑2) ∈ ℂ)
109106, 108addcomd 10842 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → ((𝑥↑2) + (𝑦↑2)) = ((𝑦↑2) + (𝑥↑2)))
110109eqeq2d 2832 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → (((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑦↑2) + (𝑐↑2)) = ((𝑦↑2) + (𝑥↑2))))
11126adantl 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → (𝑐↑2) ∈ ℝ)
11233ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → (𝑥↑2) ∈ ℝ)
11329ad2antlr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → (𝑦↑2) ∈ ℝ)
114 readdcan 10814 . . . . . . . . . . . . . . . . . . . . 21 (((𝑐↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ ∧ (𝑦↑2) ∈ ℝ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑦↑2) + (𝑥↑2)) ↔ (𝑐↑2) = (𝑥↑2)))
115111, 112, 113, 114syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → (((𝑦↑2) + (𝑐↑2)) = ((𝑦↑2) + (𝑥↑2)) ↔ (𝑐↑2) = (𝑥↑2)))
116110, 115bitrd 281 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → (((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑐↑2) = (𝑥↑2)))
11725ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑐 ∈ ℝ)
11832adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → 𝑥 ∈ ℝ)
119118ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑥 ∈ ℝ)
12042ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑥↑2)) → 0 ≤ 𝑐)
121 nn0ge0 11923 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℕ0 → 0 ≤ 𝑥)
122121adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → 0 ≤ 𝑥)
123122ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑥↑2)) → 0 ≤ 𝑥)
124 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑥↑2)) → (𝑐↑2) = (𝑥↑2))
125117, 119, 120, 123, 124sq11d 13622 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑐 = 𝑥)
126125eqcomd 2827 . . . . . . . . . . . . . . . . . . . 20 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑥 = 𝑐)
127126ex 415 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → ((𝑐↑2) = (𝑥↑2) → 𝑥 = 𝑐))
128116, 127sylbid 242 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → (((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) → 𝑥 = 𝑐))
129128adantld 493 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))
130129ralrimiva 3182 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))
131130adantr 483 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ ¬ 𝑥𝑦) → ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))
13298, 104, 131jca31 517 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ ¬ 𝑥𝑦) → ((𝑦𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)))
13379, 89, 132rspcedvd 3626 . . . . . . . . . . . . 13 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ ¬ 𝑥𝑦) → ∃𝑏 ∈ ℕ0 ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)))
134 breq2 5070 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → (𝑦𝑏𝑦𝑐))
13554oveq2d 7172 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑐 → ((𝑦↑2) + (𝑏↑2)) = ((𝑦↑2) + (𝑐↑2)))
136135eqeq1d 2823 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → (((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))))
137134, 136anbi12d 632 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)))))
138137reu8 3724 . . . . . . . . . . . . 13 (∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑏 ∈ ℕ0 ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)))
139133, 138sylibr 236 . . . . . . . . . . . 12 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ ¬ 𝑥𝑦) → ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
140139ex 415 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (¬ 𝑥𝑦 → ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
141140adantr 483 . . . . . . . . . 10 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (¬ 𝑥𝑦 → ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
142141impcom 410 . . . . . . . . 9 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
143 eqeq2 2833 . . . . . . . . . . . . 13 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (((𝑦↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
144143anbi2d 630 . . . . . . . . . . . 12 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
145144reubidv 3389 . . . . . . . . . . 11 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
146145adantl 484 . . . . . . . . . 10 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
147146adantl 484 . . . . . . . . 9 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → (∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
148142, 147mpbird 259 . . . . . . . 8 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃))
14971, 78, 148rspcedvd 3626 . . . . . . 7 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
15069, 149pm2.61ian 810 . . . . . 6 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → ∃𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
151150ex 415 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ∃𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
152151adantl 484 . . . 4 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ∃𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
153152rexlimdvva 3294 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)) → ∃𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
1541, 153mpd 15 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
155 reurex 3431 . . . . 5 (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
156155a1i 11 . . . 4 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) → (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
157156ralrimiva 3182 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∀𝑎 ∈ ℕ0 (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
158 2sqmo 26013 . . . 4 (𝑃 ∈ ℙ → ∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
159158adantr 483 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
160 rmoim 3731 . . 3 (∀𝑎 ∈ ℕ0 (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃*𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
161157, 159, 160sylc 65 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃*𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
162 reu5 3430 . 2 (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (∃𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃*𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
163154, 161, 162sylanbrc 585 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  ∃!wreu 3140  ∃*wrmo 3141   class class class wbr 5066  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   < clt 10675  cle 10676  2c2 11693  4c4 11695  0cn0 11898   mod cmo 13238  cexp 13430  cprime 16015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-ec 8291  df-qs 8295  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-gcd 15844  df-prm 16016  df-phi 16103  df-pc 16174  df-gz 16266  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-imas 16781  df-qus 16782  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-nsg 18277  df-eqg 18278  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-srg 19256  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19504  df-field 19505  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-sra 19944  df-rgmod 19945  df-lidl 19946  df-rsp 19947  df-2idl 20005  df-nzr 20031  df-rlreg 20056  df-domn 20057  df-idom 20058  df-assa 20085  df-asp 20086  df-ascl 20087  df-psr 20136  df-mvr 20137  df-mpl 20138  df-opsr 20140  df-evls 20286  df-evl 20287  df-psr1 20348  df-vr1 20349  df-ply1 20350  df-coe1 20351  df-evl1 20479  df-cnfld 20546  df-zring 20618  df-zrh 20651  df-zn 20654  df-mdeg 24649  df-deg1 24650  df-mon1 24724  df-uc1p 24725  df-q1p 24726  df-r1p 24727  df-lgs 25871
This theorem is referenced by:  2sqreultlem  26023  2sqreu  26032
  Copyright terms: Public domain W3C validator