MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmpt2ss Structured version   Visualization version   GIF version

Theorem cncfmpt2ss 23523
Description: Composition of continuous functions in a subset. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
cncfmpt2ss.1 𝐽 = (TopOpen‘ℂfld)
cncfmpt2ss.2 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
cncfmpt2ss.3 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn𝑆))
cncfmpt2ss.4 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn𝑆))
cncfmpt2ss.5 𝑆 ⊆ ℂ
cncfmpt2ss.6 ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
Assertion
Ref Expression
cncfmpt2ss (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn𝑆))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝜑,𝑥   𝑥,𝑆   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem cncfmpt2ss
StepHypRef Expression
1 cncfmpt2ss.3 . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn𝑆))
2 cncff 23501 . . . . . 6 ((𝑥𝑋𝐴) ∈ (𝑋cn𝑆) → (𝑥𝑋𝐴):𝑋𝑆)
31, 2syl 17 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋𝑆)
43fvmptelrn 6877 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑆)
5 cncfmpt2ss.4 . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn𝑆))
6 cncff 23501 . . . . . 6 ((𝑥𝑋𝐵) ∈ (𝑋cn𝑆) → (𝑥𝑋𝐵):𝑋𝑆)
75, 6syl 17 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋𝑆)
87fvmptelrn 6877 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑆)
9 cncfmpt2ss.6 . . . 4 ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
104, 8, 9syl2anc 586 . . 3 ((𝜑𝑥𝑋) → (𝐴𝐹𝐵) ∈ 𝑆)
1110fmpttd 6879 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)):𝑋𝑆)
12 cncfmpt2ss.5 . . 3 𝑆 ⊆ ℂ
13 cncfmpt2ss.1 . . . 4 𝐽 = (TopOpen‘ℂfld)
14 cncfmpt2ss.2 . . . . 5 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
1514a1i 11 . . . 4 (𝜑𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
16 ssid 3989 . . . . . 6 ℂ ⊆ ℂ
17 cncfss 23507 . . . . . 6 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑋cn𝑆) ⊆ (𝑋cn→ℂ))
1812, 16, 17mp2an 690 . . . . 5 (𝑋cn𝑆) ⊆ (𝑋cn→ℂ)
1918, 1sseldi 3965 . . . 4 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2018, 5sseldi 3965 . . . 4 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
2113, 15, 19, 20cncfmpt2f 23522 . . 3 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn→ℂ))
22 cncffvrn 23506 . . 3 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn→ℂ)) → ((𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn𝑆) ↔ (𝑥𝑋 ↦ (𝐴𝐹𝐵)):𝑋𝑆))
2312, 21, 22sylancr 589 . 2 (𝜑 → ((𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn𝑆) ↔ (𝑥𝑋 ↦ (𝐴𝐹𝐵)):𝑋𝑆))
2411, 23mpbird 259 1 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wss 3936  cmpt 5146  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  TopOpenctopn 16695  fldccnfld 20545   Cn ccn 21832   ×t ctx 22168  cnccncf 23484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-fz 12894  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mulr 16579  df-starv 16580  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-rest 16696  df-topn 16697  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cn 21835  df-cnp 21836  df-tx 22170  df-xms 22930  df-ms 22931  df-cncf 23486
This theorem is referenced by:  cmvth  24588  dvle  24604  dvfsumle  24618  dvfsumge  24619  dvfsumlem2  24624
  Copyright terms: Public domain W3C validator