MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfss Structured version   Visualization version   GIF version

Theorem cncfss 22457
Description: The set of continuous functions is expanded when the range is expanded. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
cncfss ((𝐵𝐶𝐶 ⊆ ℂ) → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))

Proof of Theorem cncfss
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cncff 22451 . . . . . 6 (𝑓 ∈ (𝐴cn𝐵) → 𝑓:𝐴𝐵)
21adantl 480 . . . . 5 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → 𝑓:𝐴𝐵)
3 simpll 785 . . . . 5 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → 𝐵𝐶)
42, 3fssd 5955 . . . 4 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → 𝑓:𝐴𝐶)
5 cncffvrn 22456 . . . . 5 ((𝐶 ⊆ ℂ ∧ 𝑓 ∈ (𝐴cn𝐵)) → (𝑓 ∈ (𝐴cn𝐶) ↔ 𝑓:𝐴𝐶))
65adantll 745 . . . 4 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → (𝑓 ∈ (𝐴cn𝐶) ↔ 𝑓:𝐴𝐶))
74, 6mpbird 245 . . 3 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → 𝑓 ∈ (𝐴cn𝐶))
87ex 448 . 2 ((𝐵𝐶𝐶 ⊆ ℂ) → (𝑓 ∈ (𝐴cn𝐵) → 𝑓 ∈ (𝐴cn𝐶)))
98ssrdv 3573 1 ((𝐵𝐶𝐶 ⊆ ℂ) → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  wcel 1976  wss 3539  wf 5785  (class class class)co 6526  cc 9790  cnccncf 22434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4942  df-po 4948  df-so 4949  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-2 10928  df-cj 13635  df-re 13636  df-im 13637  df-abs 13772  df-cncf 22436
This theorem is referenced by:  cncfmptid  22470  cncfmpt2ss  22473  evthicc2  22980  volivth  23125  iblabslem  23344  iblabs  23345  bddmulibl  23355  cnlimci  23403  rolle  23501  c1liplem1  23507  dvivth  23521  dvcnvrelem2  23529  itgsubst  23560  logcn  24137  logccv  24153  knoppcnlem10  31455  ftc1cnnclem  32436  ftc2nc  32447  areacirclem2  32454  evthiccabs  38348  cncfcompt  38551  cncficcgt0  38557  cncfiooicc  38563  cncfiooiccre  38564  cncfcompt2  38568  itgsubsticclem  38650  fourierdlem72  38854  fourierdlem78  38860  fourierdlem83  38865  fourierdlem84  38866  fourierdlem85  38867  fourierdlem88  38870  fourierdlem95  38877  fourierdlem111  38893
  Copyright terms: Public domain W3C validator