MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpcn2 Structured version   Visualization version   GIF version

Theorem cxpcn2 25327
Description: Continuity of the complex power function, when the base is real. (Contributed by Mario Carneiro, 1-May-2016.)
Hypotheses
Ref Expression
cxpcn2.j 𝐽 = (TopOpen‘ℂfld)
cxpcn2.k 𝐾 = (𝐽t+)
Assertion
Ref Expression
cxpcn2 (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)
Distinct variable group:   𝑥,𝑦,𝐽
Allowed substitution hints:   𝐾(𝑥,𝑦)

Proof of Theorem cxpcn2
StepHypRef Expression
1 cxpcn2.k . . . 4 𝐾 = (𝐽t+)
2 cxpcn2.j . . . . . 6 𝐽 = (TopOpen‘ℂfld)
32cnfldtopon 23391 . . . . 5 𝐽 ∈ (TopOn‘ℂ)
4 rpcn 12400 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
5 ax-1 6 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+))
6 eqid 2821 . . . . . . . 8 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
76ellogdm 25222 . . . . . . 7 (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
84, 5, 7sylanbrc 585 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ (ℂ ∖ (-∞(,]0)))
98ssriv 3971 . . . . 5 + ⊆ (ℂ ∖ (-∞(,]0))
10 cnex 10618 . . . . . 6 ℂ ∈ V
1110difexi 5232 . . . . 5 (ℂ ∖ (-∞(,]0)) ∈ V
12 restabs 21773 . . . . 5 ((𝐽 ∈ (TopOn‘ℂ) ∧ ℝ+ ⊆ (ℂ ∖ (-∞(,]0)) ∧ (ℂ ∖ (-∞(,]0)) ∈ V) → ((𝐽t (ℂ ∖ (-∞(,]0))) ↾t+) = (𝐽t+))
133, 9, 11, 12mp3an 1457 . . . 4 ((𝐽t (ℂ ∖ (-∞(,]0))) ↾t+) = (𝐽t+)
141, 13eqtr4i 2847 . . 3 𝐾 = ((𝐽t (ℂ ∖ (-∞(,]0))) ↾t+)
153a1i 11 . . . 4 (⊤ → 𝐽 ∈ (TopOn‘ℂ))
16 difss 4108 . . . 4 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
17 resttopon 21769 . . . 4 ((𝐽 ∈ (TopOn‘ℂ) ∧ (ℂ ∖ (-∞(,]0)) ⊆ ℂ) → (𝐽t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0))))
1815, 16, 17sylancl 588 . . 3 (⊤ → (𝐽t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0))))
199a1i 11 . . 3 (⊤ → ℝ+ ⊆ (ℂ ∖ (-∞(,]0)))
203toponrestid 21529 . . 3 𝐽 = (𝐽t ℂ)
21 ssidd 3990 . . 3 (⊤ → ℂ ⊆ ℂ)
22 eqid 2821 . . . . 5 (𝐽t (ℂ ∖ (-∞(,]0))) = (𝐽t (ℂ ∖ (-∞(,]0)))
236, 2, 22cxpcn 25326 . . . 4 (𝑥 ∈ (ℂ ∖ (-∞(,]0)), 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t (ℂ ∖ (-∞(,]0))) ×t 𝐽) Cn 𝐽)
2423a1i 11 . . 3 (⊤ → (𝑥 ∈ (ℂ ∖ (-∞(,]0)), 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t (ℂ ∖ (-∞(,]0))) ×t 𝐽) Cn 𝐽))
2514, 18, 19, 20, 15, 21, 24cnmpt2res 22285 . 2 (⊤ → (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
2625mptru 1544 1 (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wtru 1538  wcel 2114  Vcvv 3494  cdif 3933  wss 3936  cfv 6355  (class class class)co 7156  cmpo 7158  cc 10535  cr 10536  0cc0 10537  -∞cmnf 10673  +crp 12390  (,]cioc 12740  t crest 16694  TopOpenctopn 16695  fldccnfld 20545  TopOnctopon 21518   Cn ccn 21832   ×t ctx 22168  𝑐ccxp 25139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-tan 15425  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140  df-cxp 25141
This theorem is referenced by:  cxpcn3  25329
  Copyright terms: Public domain W3C validator