MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcubic1 Structured version   Visualization version   GIF version

Theorem dcubic1 25425
Description: Forward direction of dcubic 25426: the claimed formula produces solutions to the cubic equation. (Contributed by Mario Carneiro, 25-Apr-2015.)
Hypotheses
Ref Expression
dcubic.c (𝜑𝑃 ∈ ℂ)
dcubic.d (𝜑𝑄 ∈ ℂ)
dcubic.x (𝜑𝑋 ∈ ℂ)
dcubic.t (𝜑𝑇 ∈ ℂ)
dcubic.3 (𝜑 → (𝑇↑3) = (𝐺𝑁))
dcubic.g (𝜑𝐺 ∈ ℂ)
dcubic.2 (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3)))
dcubic.m (𝜑𝑀 = (𝑃 / 3))
dcubic.n (𝜑𝑁 = (𝑄 / 2))
dcubic.0 (𝜑𝑇 ≠ 0)
dcubic1.x (𝜑𝑋 = (𝑇 − (𝑀 / 𝑇)))
Assertion
Ref Expression
dcubic1 (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0)

Proof of Theorem dcubic1
StepHypRef Expression
1 dcubic.3 . . . . . . 7 (𝜑 → (𝑇↑3) = (𝐺𝑁))
21oveq1d 7173 . . . . . 6 (𝜑 → ((𝑇↑3)↑2) = ((𝐺𝑁)↑2))
3 dcubic.g . . . . . . 7 (𝜑𝐺 ∈ ℂ)
4 dcubic.n . . . . . . . 8 (𝜑𝑁 = (𝑄 / 2))
5 dcubic.d . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
65halfcld 11885 . . . . . . . 8 (𝜑 → (𝑄 / 2) ∈ ℂ)
74, 6eqeltrd 2915 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
8 binom2sub 13584 . . . . . . 7 ((𝐺 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐺𝑁)↑2) = (((𝐺↑2) − (2 · (𝐺 · 𝑁))) + (𝑁↑2)))
93, 7, 8syl2anc 586 . . . . . 6 (𝜑 → ((𝐺𝑁)↑2) = (((𝐺↑2) − (2 · (𝐺 · 𝑁))) + (𝑁↑2)))
10 dcubic.2 . . . . . . . 8 (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3)))
11 2cnd 11718 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
1211, 3, 7mul12d 10851 . . . . . . . . 9 (𝜑 → (2 · (𝐺 · 𝑁)) = (𝐺 · (2 · 𝑁)))
134oveq2d 7174 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) = (2 · (𝑄 / 2)))
14 2ne0 11744 . . . . . . . . . . . . 13 2 ≠ 0
1514a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
165, 11, 15divcan2d 11420 . . . . . . . . . . 11 (𝜑 → (2 · (𝑄 / 2)) = 𝑄)
1713, 16eqtrd 2858 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) = 𝑄)
1817oveq2d 7174 . . . . . . . . 9 (𝜑 → (𝐺 · (2 · 𝑁)) = (𝐺 · 𝑄))
193, 5mulcomd 10664 . . . . . . . . 9 (𝜑 → (𝐺 · 𝑄) = (𝑄 · 𝐺))
2012, 18, 193eqtrd 2862 . . . . . . . 8 (𝜑 → (2 · (𝐺 · 𝑁)) = (𝑄 · 𝐺))
2110, 20oveq12d 7176 . . . . . . 7 (𝜑 → ((𝐺↑2) − (2 · (𝐺 · 𝑁))) = (((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)))
2221oveq1d 7173 . . . . . 6 (𝜑 → (((𝐺↑2) − (2 · (𝐺 · 𝑁))) + (𝑁↑2)) = ((((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)) + (𝑁↑2)))
232, 9, 223eqtrd 2862 . . . . 5 (𝜑 → ((𝑇↑3)↑2) = ((((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)) + (𝑁↑2)))
247sqcld 13511 . . . . . . 7 (𝜑 → (𝑁↑2) ∈ ℂ)
25 dcubic.m . . . . . . . . 9 (𝜑𝑀 = (𝑃 / 3))
26 dcubic.c . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
27 3cn 11721 . . . . . . . . . . 11 3 ∈ ℂ
2827a1i 11 . . . . . . . . . 10 (𝜑 → 3 ∈ ℂ)
29 3ne0 11746 . . . . . . . . . . 11 3 ≠ 0
3029a1i 11 . . . . . . . . . 10 (𝜑 → 3 ≠ 0)
3126, 28, 30divcld 11418 . . . . . . . . 9 (𝜑 → (𝑃 / 3) ∈ ℂ)
3225, 31eqeltrd 2915 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
33 3nn0 11918 . . . . . . . 8 3 ∈ ℕ0
34 expcl 13450 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑀↑3) ∈ ℂ)
3532, 33, 34sylancl 588 . . . . . . 7 (𝜑 → (𝑀↑3) ∈ ℂ)
3624, 35addcld 10662 . . . . . 6 (𝜑 → ((𝑁↑2) + (𝑀↑3)) ∈ ℂ)
375, 3mulcld 10663 . . . . . 6 (𝜑 → (𝑄 · 𝐺) ∈ ℂ)
3836, 24, 37addsubd 11020 . . . . 5 (𝜑 → ((((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) − (𝑄 · 𝐺)) = ((((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)) + (𝑁↑2)))
3924, 35, 24add32d 10869 . . . . . . 7 (𝜑 → (((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) = (((𝑁↑2) + (𝑁↑2)) + (𝑀↑3)))
40242timesd 11883 . . . . . . . 8 (𝜑 → (2 · (𝑁↑2)) = ((𝑁↑2) + (𝑁↑2)))
4140oveq1d 7173 . . . . . . 7 (𝜑 → ((2 · (𝑁↑2)) + (𝑀↑3)) = (((𝑁↑2) + (𝑁↑2)) + (𝑀↑3)))
4239, 41eqtr4d 2861 . . . . . 6 (𝜑 → (((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) = ((2 · (𝑁↑2)) + (𝑀↑3)))
4342oveq1d 7173 . . . . 5 (𝜑 → ((((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) − (𝑄 · 𝐺)) = (((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)))
4423, 38, 433eqtr2d 2864 . . . 4 (𝜑 → ((𝑇↑3)↑2) = (((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)))
455, 3, 7subdid 11098 . . . . . . 7 (𝜑 → (𝑄 · (𝐺𝑁)) = ((𝑄 · 𝐺) − (𝑄 · 𝑁)))
461oveq2d 7174 . . . . . . 7 (𝜑 → (𝑄 · (𝑇↑3)) = (𝑄 · (𝐺𝑁)))
477sqvald 13510 . . . . . . . . . 10 (𝜑 → (𝑁↑2) = (𝑁 · 𝑁))
4847oveq2d 7174 . . . . . . . . 9 (𝜑 → (2 · (𝑁↑2)) = (2 · (𝑁 · 𝑁)))
4911, 7, 7mulassd 10666 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) · 𝑁) = (2 · (𝑁 · 𝑁)))
5017oveq1d 7173 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) · 𝑁) = (𝑄 · 𝑁))
5148, 49, 503eqtr2d 2864 . . . . . . . 8 (𝜑 → (2 · (𝑁↑2)) = (𝑄 · 𝑁))
5251oveq2d 7174 . . . . . . 7 (𝜑 → ((𝑄 · 𝐺) − (2 · (𝑁↑2))) = ((𝑄 · 𝐺) − (𝑄 · 𝑁)))
5345, 46, 523eqtr4d 2868 . . . . . 6 (𝜑 → (𝑄 · (𝑇↑3)) = ((𝑄 · 𝐺) − (2 · (𝑁↑2))))
5453oveq1d 7173 . . . . 5 (𝜑 → ((𝑄 · (𝑇↑3)) − (𝑀↑3)) = (((𝑄 · 𝐺) − (2 · (𝑁↑2))) − (𝑀↑3)))
55 2cn 11715 . . . . . . 7 2 ∈ ℂ
56 mulcl 10623 . . . . . . 7 ((2 ∈ ℂ ∧ (𝑁↑2) ∈ ℂ) → (2 · (𝑁↑2)) ∈ ℂ)
5755, 24, 56sylancr 589 . . . . . 6 (𝜑 → (2 · (𝑁↑2)) ∈ ℂ)
5837, 57, 35subsub4d 11030 . . . . 5 (𝜑 → (((𝑄 · 𝐺) − (2 · (𝑁↑2))) − (𝑀↑3)) = ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3))))
5954, 58eqtrd 2858 . . . 4 (𝜑 → ((𝑄 · (𝑇↑3)) − (𝑀↑3)) = ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3))))
6044, 59oveq12d 7176 . . 3 (𝜑 → (((𝑇↑3)↑2) + ((𝑄 · (𝑇↑3)) − (𝑀↑3))) = ((((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)) + ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3)))))
6157, 35addcld 10662 . . . 4 (𝜑 → ((2 · (𝑁↑2)) + (𝑀↑3)) ∈ ℂ)
62 npncan2 10915 . . . 4 ((((2 · (𝑁↑2)) + (𝑀↑3)) ∈ ℂ ∧ (𝑄 · 𝐺) ∈ ℂ) → ((((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)) + ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3)))) = 0)
6361, 37, 62syl2anc 586 . . 3 (𝜑 → ((((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)) + ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3)))) = 0)
6460, 63eqtrd 2858 . 2 (𝜑 → (((𝑇↑3)↑2) + ((𝑄 · (𝑇↑3)) − (𝑀↑3))) = 0)
65 dcubic.x . . 3 (𝜑𝑋 ∈ ℂ)
66 dcubic.t . . 3 (𝜑𝑇 ∈ ℂ)
67 dcubic.0 . . 3 (𝜑𝑇 ≠ 0)
68 dcubic1.x . . 3 (𝜑𝑋 = (𝑇 − (𝑀 / 𝑇)))
6926, 5, 65, 66, 1, 3, 10, 25, 4, 67, 66, 67, 68dcubic1lem 25423 . 2 (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ (((𝑇↑3)↑2) + ((𝑄 · (𝑇↑3)) − (𝑀↑3))) = 0))
7064, 69mpbird 259 1 (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wne 3018  (class class class)co 7158  cc 10537  0cc0 10539   + caddc 10542   · cmul 10544  cmin 10872   / cdiv 11299  2c2 11695  3c3 11696  0cn0 11900  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-dvds 15610
This theorem is referenced by:  dcubic  25426
  Copyright terms: Public domain W3C validator