![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1sublt | Structured version Visualization version GIF version |
Description: Subtraction of two polynomials limited to the same degree with the same leading coefficient gives a polynomial with a smaller degree. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
Ref | Expression |
---|---|
deg1sublt.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1sublt.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1sublt.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1sublt.m | ⊢ − = (-g‘𝑃) |
deg1sublt.l | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
deg1sublt.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1sublt.fb | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
deg1sublt.fd | ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐿) |
deg1sublt.gb | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
deg1sublt.gd | ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐿) |
deg1sublt.a | ⊢ 𝐴 = (coe1‘𝐹) |
deg1sublt.c | ⊢ 𝐶 = (coe1‘𝐺) |
deg1sublt.eq | ⊢ (𝜑 → ((coe1‘𝐹)‘𝐿) = ((coe1‘𝐺)‘𝐿)) |
Ref | Expression |
---|---|
deg1sublt | ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) < 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1sublt.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | deg1sublt.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | eqid 2752 | . . . 4 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
4 | deg1sublt.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
5 | eqid 2752 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
6 | eqid 2752 | . . . 4 ⊢ (coe1‘(𝐹 − 𝐺)) = (coe1‘(𝐹 − 𝐺)) | |
7 | deg1sublt.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
8 | 2 | ply1ring 19812 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
9 | ringgrp 18744 | . . . . . 6 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) | |
10 | 7, 8, 9 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Grp) |
11 | deg1sublt.fb | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
12 | deg1sublt.gb | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
13 | deg1sublt.m | . . . . . 6 ⊢ − = (-g‘𝑃) | |
14 | 4, 13 | grpsubcl 17688 | . . . . 5 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 − 𝐺) ∈ 𝐵) |
15 | 10, 11, 12, 14 | syl3anc 1473 | . . . 4 ⊢ (𝜑 → (𝐹 − 𝐺) ∈ 𝐵) |
16 | deg1sublt.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
17 | eqid 2752 | . . . . . . 7 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
18 | 2, 4, 13, 17 | coe1subfv 19830 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝐿 ∈ ℕ0) → ((coe1‘(𝐹 − 𝐺))‘𝐿) = (((coe1‘𝐹)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿))) |
19 | 7, 11, 12, 16, 18 | syl31anc 1476 | . . . . 5 ⊢ (𝜑 → ((coe1‘(𝐹 − 𝐺))‘𝐿) = (((coe1‘𝐹)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿))) |
20 | deg1sublt.eq | . . . . . 6 ⊢ (𝜑 → ((coe1‘𝐹)‘𝐿) = ((coe1‘𝐺)‘𝐿)) | |
21 | 20 | oveq1d 6820 | . . . . 5 ⊢ (𝜑 → (((coe1‘𝐹)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿)) = (((coe1‘𝐺)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿))) |
22 | ringgrp 18744 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
23 | 7, 22 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
24 | eqid 2752 | . . . . . . . . 9 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
25 | eqid 2752 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
26 | 24, 4, 2, 25 | coe1f 19775 | . . . . . . . 8 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
27 | 12, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
28 | 27, 16 | ffvelrnd 6515 | . . . . . 6 ⊢ (𝜑 → ((coe1‘𝐺)‘𝐿) ∈ (Base‘𝑅)) |
29 | 25, 5, 17 | grpsubid 17692 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ ((coe1‘𝐺)‘𝐿) ∈ (Base‘𝑅)) → (((coe1‘𝐺)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿)) = (0g‘𝑅)) |
30 | 23, 28, 29 | syl2anc 696 | . . . . 5 ⊢ (𝜑 → (((coe1‘𝐺)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿)) = (0g‘𝑅)) |
31 | 19, 21, 30 | 3eqtrd 2790 | . . . 4 ⊢ (𝜑 → ((coe1‘(𝐹 − 𝐺))‘𝐿) = (0g‘𝑅)) |
32 | 1, 2, 3, 4, 5, 6, 7, 15, 16, 31 | deg1ldgn 24044 | . . 3 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≠ 𝐿) |
33 | 32 | neneqd 2929 | . 2 ⊢ (𝜑 → ¬ (𝐷‘(𝐹 − 𝐺)) = 𝐿) |
34 | 1, 2, 4 | deg1xrcl 24033 | . . . . 5 ⊢ ((𝐹 − 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 − 𝐺)) ∈ ℝ*) |
35 | 15, 34 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ∈ ℝ*) |
36 | 1, 2, 4 | deg1xrcl 24033 | . . . . . 6 ⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) ∈ ℝ*) |
37 | 12, 36 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐺) ∈ ℝ*) |
38 | 1, 2, 4 | deg1xrcl 24033 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ ℝ*) |
39 | 11, 38 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℝ*) |
40 | 37, 39 | ifcld 4267 | . . . 4 ⊢ (𝜑 → if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ∈ ℝ*) |
41 | 16 | nn0red 11536 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
42 | 41 | rexrd 10273 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℝ*) |
43 | 2, 1, 7, 4, 13, 11, 12 | deg1suble 24058 | . . . 4 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) |
44 | deg1sublt.fd | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐿) | |
45 | deg1sublt.gd | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐿) | |
46 | xrmaxle 12199 | . . . . . 6 ⊢ (((𝐷‘𝐹) ∈ ℝ* ∧ (𝐷‘𝐺) ∈ ℝ* ∧ 𝐿 ∈ ℝ*) → (if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ≤ 𝐿 ↔ ((𝐷‘𝐹) ≤ 𝐿 ∧ (𝐷‘𝐺) ≤ 𝐿))) | |
47 | 39, 37, 42, 46 | syl3anc 1473 | . . . . 5 ⊢ (𝜑 → (if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ≤ 𝐿 ↔ ((𝐷‘𝐹) ≤ 𝐿 ∧ (𝐷‘𝐺) ≤ 𝐿))) |
48 | 44, 45, 47 | mpbir2and 995 | . . . 4 ⊢ (𝜑 → if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ≤ 𝐿) |
49 | 35, 40, 42, 43, 48 | xrletrd 12178 | . . 3 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≤ 𝐿) |
50 | xrleloe 12162 | . . . 4 ⊢ (((𝐷‘(𝐹 − 𝐺)) ∈ ℝ* ∧ 𝐿 ∈ ℝ*) → ((𝐷‘(𝐹 − 𝐺)) ≤ 𝐿 ↔ ((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿))) | |
51 | 35, 42, 50 | syl2anc 696 | . . 3 ⊢ (𝜑 → ((𝐷‘(𝐹 − 𝐺)) ≤ 𝐿 ↔ ((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿))) |
52 | 49, 51 | mpbid 222 | . 2 ⊢ (𝜑 → ((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿)) |
53 | orel2 397 | . 2 ⊢ (¬ (𝐷‘(𝐹 − 𝐺)) = 𝐿 → (((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿) → (𝐷‘(𝐹 − 𝐺)) < 𝐿)) | |
54 | 33, 52, 53 | sylc 65 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) < 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ifcif 4222 class class class wbr 4796 ⟶wf 6037 ‘cfv 6041 (class class class)co 6805 ℝ*cxr 10257 < clt 10258 ≤ cle 10259 ℕ0cn0 11476 Basecbs 16051 0gc0g 16294 Grpcgrp 17615 -gcsg 17617 Ringcrg 18739 Poly1cpl1 19741 coe1cco1 19742 deg1 cdg1 24005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-inf2 8703 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 ax-addf 10199 ax-mulf 10200 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-iin 4667 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-se 5218 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-isom 6050 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-of 7054 df-ofr 7055 df-om 7223 df-1st 7325 df-2nd 7326 df-supp 7456 df-tpos 7513 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-2o 7722 df-oadd 7725 df-er 7903 df-map 8017 df-pm 8018 df-ixp 8067 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8433 df-sup 8505 df-oi 8572 df-card 8947 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-2 11263 df-3 11264 df-4 11265 df-5 11266 df-6 11267 df-7 11268 df-8 11269 df-9 11270 df-n0 11477 df-z 11562 df-dec 11678 df-uz 11872 df-fz 12512 df-fzo 12652 df-seq 12988 df-hash 13304 df-struct 16053 df-ndx 16054 df-slot 16055 df-base 16057 df-sets 16058 df-ress 16059 df-plusg 16148 df-mulr 16149 df-starv 16150 df-sca 16151 df-vsca 16152 df-tset 16154 df-ple 16155 df-ds 16158 df-unif 16159 df-0g 16296 df-gsum 16297 df-mre 16440 df-mrc 16441 df-acs 16443 df-mgm 17435 df-sgrp 17477 df-mnd 17488 df-mhm 17528 df-submnd 17529 df-grp 17618 df-minusg 17619 df-sbg 17620 df-mulg 17734 df-subg 17784 df-ghm 17851 df-cntz 17942 df-cmn 18387 df-abl 18388 df-mgp 18682 df-ur 18694 df-ring 18741 df-cring 18742 df-oppr 18815 df-dvdsr 18833 df-unit 18834 df-invr 18864 df-subrg 18972 df-lmod 19059 df-lss 19127 df-rlreg 19477 df-psr 19550 df-mpl 19552 df-opsr 19554 df-psr1 19744 df-ply1 19746 df-coe1 19747 df-cnfld 19941 df-mdeg 24006 df-deg1 24007 |
This theorem is referenced by: ply1divex 24087 deg1submon1p 24103 hbtlem5 38192 |
Copyright terms: Public domain | W3C validator |