MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1sublt Structured version   Visualization version   GIF version

Theorem deg1sublt 24061
Description: Subtraction of two polynomials limited to the same degree with the same leading coefficient gives a polynomial with a smaller degree. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
deg1sublt.d 𝐷 = ( deg1𝑅)
deg1sublt.p 𝑃 = (Poly1𝑅)
deg1sublt.b 𝐵 = (Base‘𝑃)
deg1sublt.m = (-g𝑃)
deg1sublt.l (𝜑𝐿 ∈ ℕ0)
deg1sublt.r (𝜑𝑅 ∈ Ring)
deg1sublt.fb (𝜑𝐹𝐵)
deg1sublt.fd (𝜑 → (𝐷𝐹) ≤ 𝐿)
deg1sublt.gb (𝜑𝐺𝐵)
deg1sublt.gd (𝜑 → (𝐷𝐺) ≤ 𝐿)
deg1sublt.a 𝐴 = (coe1𝐹)
deg1sublt.c 𝐶 = (coe1𝐺)
deg1sublt.eq (𝜑 → ((coe1𝐹)‘𝐿) = ((coe1𝐺)‘𝐿))
Assertion
Ref Expression
deg1sublt (𝜑 → (𝐷‘(𝐹 𝐺)) < 𝐿)

Proof of Theorem deg1sublt
StepHypRef Expression
1 deg1sublt.d . . . 4 𝐷 = ( deg1𝑅)
2 deg1sublt.p . . . 4 𝑃 = (Poly1𝑅)
3 eqid 2752 . . . 4 (0g𝑃) = (0g𝑃)
4 deg1sublt.b . . . 4 𝐵 = (Base‘𝑃)
5 eqid 2752 . . . 4 (0g𝑅) = (0g𝑅)
6 eqid 2752 . . . 4 (coe1‘(𝐹 𝐺)) = (coe1‘(𝐹 𝐺))
7 deg1sublt.r . . . 4 (𝜑𝑅 ∈ Ring)
82ply1ring 19812 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
9 ringgrp 18744 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
107, 8, 93syl 18 . . . . 5 (𝜑𝑃 ∈ Grp)
11 deg1sublt.fb . . . . 5 (𝜑𝐹𝐵)
12 deg1sublt.gb . . . . 5 (𝜑𝐺𝐵)
13 deg1sublt.m . . . . . 6 = (-g𝑃)
144, 13grpsubcl 17688 . . . . 5 ((𝑃 ∈ Grp ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
1510, 11, 12, 14syl3anc 1473 . . . 4 (𝜑 → (𝐹 𝐺) ∈ 𝐵)
16 deg1sublt.l . . . 4 (𝜑𝐿 ∈ ℕ0)
17 eqid 2752 . . . . . . 7 (-g𝑅) = (-g𝑅)
182, 4, 13, 17coe1subfv 19830 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝐿 ∈ ℕ0) → ((coe1‘(𝐹 𝐺))‘𝐿) = (((coe1𝐹)‘𝐿)(-g𝑅)((coe1𝐺)‘𝐿)))
197, 11, 12, 16, 18syl31anc 1476 . . . . 5 (𝜑 → ((coe1‘(𝐹 𝐺))‘𝐿) = (((coe1𝐹)‘𝐿)(-g𝑅)((coe1𝐺)‘𝐿)))
20 deg1sublt.eq . . . . . 6 (𝜑 → ((coe1𝐹)‘𝐿) = ((coe1𝐺)‘𝐿))
2120oveq1d 6820 . . . . 5 (𝜑 → (((coe1𝐹)‘𝐿)(-g𝑅)((coe1𝐺)‘𝐿)) = (((coe1𝐺)‘𝐿)(-g𝑅)((coe1𝐺)‘𝐿)))
22 ringgrp 18744 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
237, 22syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
24 eqid 2752 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
25 eqid 2752 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
2624, 4, 2, 25coe1f 19775 . . . . . . . 8 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
2712, 26syl 17 . . . . . . 7 (𝜑 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
2827, 16ffvelrnd 6515 . . . . . 6 (𝜑 → ((coe1𝐺)‘𝐿) ∈ (Base‘𝑅))
2925, 5, 17grpsubid 17692 . . . . . 6 ((𝑅 ∈ Grp ∧ ((coe1𝐺)‘𝐿) ∈ (Base‘𝑅)) → (((coe1𝐺)‘𝐿)(-g𝑅)((coe1𝐺)‘𝐿)) = (0g𝑅))
3023, 28, 29syl2anc 696 . . . . 5 (𝜑 → (((coe1𝐺)‘𝐿)(-g𝑅)((coe1𝐺)‘𝐿)) = (0g𝑅))
3119, 21, 303eqtrd 2790 . . . 4 (𝜑 → ((coe1‘(𝐹 𝐺))‘𝐿) = (0g𝑅))
321, 2, 3, 4, 5, 6, 7, 15, 16, 31deg1ldgn 24044 . . 3 (𝜑 → (𝐷‘(𝐹 𝐺)) ≠ 𝐿)
3332neneqd 2929 . 2 (𝜑 → ¬ (𝐷‘(𝐹 𝐺)) = 𝐿)
341, 2, 4deg1xrcl 24033 . . . . 5 ((𝐹 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 𝐺)) ∈ ℝ*)
3515, 34syl 17 . . . 4 (𝜑 → (𝐷‘(𝐹 𝐺)) ∈ ℝ*)
361, 2, 4deg1xrcl 24033 . . . . . 6 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
3712, 36syl 17 . . . . 5 (𝜑 → (𝐷𝐺) ∈ ℝ*)
381, 2, 4deg1xrcl 24033 . . . . . 6 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
3911, 38syl 17 . . . . 5 (𝜑 → (𝐷𝐹) ∈ ℝ*)
4037, 39ifcld 4267 . . . 4 (𝜑 → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ*)
4116nn0red 11536 . . . . 5 (𝜑𝐿 ∈ ℝ)
4241rexrd 10273 . . . 4 (𝜑𝐿 ∈ ℝ*)
432, 1, 7, 4, 13, 11, 12deg1suble 24058 . . . 4 (𝜑 → (𝐷‘(𝐹 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
44 deg1sublt.fd . . . . 5 (𝜑 → (𝐷𝐹) ≤ 𝐿)
45 deg1sublt.gd . . . . 5 (𝜑 → (𝐷𝐺) ≤ 𝐿)
46 xrmaxle 12199 . . . . . 6 (((𝐷𝐹) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*𝐿 ∈ ℝ*) → (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ≤ 𝐿 ↔ ((𝐷𝐹) ≤ 𝐿 ∧ (𝐷𝐺) ≤ 𝐿)))
4739, 37, 42, 46syl3anc 1473 . . . . 5 (𝜑 → (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ≤ 𝐿 ↔ ((𝐷𝐹) ≤ 𝐿 ∧ (𝐷𝐺) ≤ 𝐿)))
4844, 45, 47mpbir2and 995 . . . 4 (𝜑 → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ≤ 𝐿)
4935, 40, 42, 43, 48xrletrd 12178 . . 3 (𝜑 → (𝐷‘(𝐹 𝐺)) ≤ 𝐿)
50 xrleloe 12162 . . . 4 (((𝐷‘(𝐹 𝐺)) ∈ ℝ*𝐿 ∈ ℝ*) → ((𝐷‘(𝐹 𝐺)) ≤ 𝐿 ↔ ((𝐷‘(𝐹 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 𝐺)) = 𝐿)))
5135, 42, 50syl2anc 696 . . 3 (𝜑 → ((𝐷‘(𝐹 𝐺)) ≤ 𝐿 ↔ ((𝐷‘(𝐹 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 𝐺)) = 𝐿)))
5249, 51mpbid 222 . 2 (𝜑 → ((𝐷‘(𝐹 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 𝐺)) = 𝐿))
53 orel2 397 . 2 (¬ (𝐷‘(𝐹 𝐺)) = 𝐿 → (((𝐷‘(𝐹 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 𝐺)) = 𝐿) → (𝐷‘(𝐹 𝐺)) < 𝐿))
5433, 52, 53sylc 65 1 (𝜑 → (𝐷‘(𝐹 𝐺)) < 𝐿)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1624  wcel 2131  ifcif 4222   class class class wbr 4796  wf 6037  cfv 6041  (class class class)co 6805  *cxr 10257   < clt 10258  cle 10259  0cn0 11476  Basecbs 16051  0gc0g 16294  Grpcgrp 17615  -gcsg 17617  Ringcrg 18739  Poly1cpl1 19741  coe1cco1 19742   deg1 cdg1 24005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-addf 10199  ax-mulf 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-ofr 7055  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-tpos 7513  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-map 8017  df-pm 8018  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-sup 8505  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-fz 12512  df-fzo 12652  df-seq 12988  df-hash 13304  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-starv 16150  df-sca 16151  df-vsca 16152  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-0g 16296  df-gsum 16297  df-mre 16440  df-mrc 16441  df-acs 16443  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-mhm 17528  df-submnd 17529  df-grp 17618  df-minusg 17619  df-sbg 17620  df-mulg 17734  df-subg 17784  df-ghm 17851  df-cntz 17942  df-cmn 18387  df-abl 18388  df-mgp 18682  df-ur 18694  df-ring 18741  df-cring 18742  df-oppr 18815  df-dvdsr 18833  df-unit 18834  df-invr 18864  df-subrg 18972  df-lmod 19059  df-lss 19127  df-rlreg 19477  df-psr 19550  df-mpl 19552  df-opsr 19554  df-psr1 19744  df-ply1 19746  df-coe1 19747  df-cnfld 19941  df-mdeg 24006  df-deg1 24007
This theorem is referenced by:  ply1divex  24087  deg1submon1p  24103  hbtlem5  38192
  Copyright terms: Public domain W3C validator