Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrecg Structured version   Visualization version   GIF version

Theorem dvrecg 39428
 Description: Derivative of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvrecg.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvrecg.a (𝜑𝐴 ∈ ℂ)
dvrecg.b ((𝜑𝑥𝑋) → 𝐵 ∈ (ℂ ∖ {0}))
dvrecg.c ((𝜑𝑥𝑋) → 𝐶𝑉)
dvrecg.db (𝜑 → (𝑆 D (𝑥𝑋𝐵)) = (𝑥𝑋𝐶))
Assertion
Ref Expression
dvrecg (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵))) = (𝑥𝑋 ↦ -((𝐴 · 𝐶) / (𝐵↑2))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝑥,𝑉   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem dvrecg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvrecg.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnelprrecn 9973 . . . 4 ℂ ∈ {ℝ, ℂ}
32a1i 11 . . 3 (𝜑 → ℂ ∈ {ℝ, ℂ})
4 dvrecg.b . . 3 ((𝜑𝑥𝑋) → 𝐵 ∈ (ℂ ∖ {0}))
5 dvrecg.c . . 3 ((𝜑𝑥𝑋) → 𝐶𝑉)
6 dvrecg.a . . . . 5 (𝜑𝐴 ∈ ℂ)
76adantr 481 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → 𝐴 ∈ ℂ)
8 eldifi 3710 . . . . 5 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
98adantl 482 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ)
10 eldifsni 4289 . . . . 5 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
1110adantl 482 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0)
127, 9, 11divcld 10745 . . 3 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / 𝑦) ∈ ℂ)
139sqcld 12946 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → (𝑦↑2) ∈ ℂ)
14 2z 11353 . . . . . . 7 2 ∈ ℤ
1514a1i 11 . . . . . 6 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → 2 ∈ ℤ)
169, 11, 15expne0d 12954 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → (𝑦↑2) ≠ 0)
177, 13, 16divcld 10745 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / (𝑦↑2)) ∈ ℂ)
1817negcld 10323 . . 3 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) ∈ ℂ)
19 dvrecg.db . . 3 (𝜑 → (𝑆 D (𝑥𝑋𝐵)) = (𝑥𝑋𝐶))
20 dvrec 23624 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑦↑2))))
216, 20syl 17 . . 3 (𝜑 → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑦↑2))))
22 oveq2 6612 . . 3 (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵))
23 oveq1 6611 . . . . 5 (𝑦 = 𝐵 → (𝑦↑2) = (𝐵↑2))
2423oveq2d 6620 . . . 4 (𝑦 = 𝐵 → (𝐴 / (𝑦↑2)) = (𝐴 / (𝐵↑2)))
2524negeqd 10219 . . 3 (𝑦 = 𝐵 → -(𝐴 / (𝑦↑2)) = -(𝐴 / (𝐵↑2)))
261, 3, 4, 5, 12, 18, 19, 21, 22, 25dvmptco 23641 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵))) = (𝑥𝑋 ↦ (-(𝐴 / (𝐵↑2)) · 𝐶)))
276adantr 481 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
28 eldifi 3710 . . . . . . . 8 (𝐵 ∈ (ℂ ∖ {0}) → 𝐵 ∈ ℂ)
294, 28syl 17 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
3029sqcld 12946 . . . . . 6 ((𝜑𝑥𝑋) → (𝐵↑2) ∈ ℂ)
31 eldifsn 4287 . . . . . . . . 9 (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
324, 31sylib 208 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
3332simprd 479 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵 ≠ 0)
3414a1i 11 . . . . . . 7 ((𝜑𝑥𝑋) → 2 ∈ ℤ)
3529, 33, 34expne0d 12954 . . . . . 6 ((𝜑𝑥𝑋) → (𝐵↑2) ≠ 0)
3627, 30, 35divcld 10745 . . . . 5 ((𝜑𝑥𝑋) → (𝐴 / (𝐵↑2)) ∈ ℂ)
371, 29, 5, 19dvmptcl 23628 . . . . 5 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
3836, 37mulneg1d 10427 . . . 4 ((𝜑𝑥𝑋) → (-(𝐴 / (𝐵↑2)) · 𝐶) = -((𝐴 / (𝐵↑2)) · 𝐶))
3927, 37, 30, 35div23d 10782 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐴 · 𝐶) / (𝐵↑2)) = ((𝐴 / (𝐵↑2)) · 𝐶))
4039eqcomd 2627 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴 / (𝐵↑2)) · 𝐶) = ((𝐴 · 𝐶) / (𝐵↑2)))
4140negeqd 10219 . . . 4 ((𝜑𝑥𝑋) → -((𝐴 / (𝐵↑2)) · 𝐶) = -((𝐴 · 𝐶) / (𝐵↑2)))
4238, 41eqtrd 2655 . . 3 ((𝜑𝑥𝑋) → (-(𝐴 / (𝐵↑2)) · 𝐶) = -((𝐴 · 𝐶) / (𝐵↑2)))
4342mpteq2dva 4704 . 2 (𝜑 → (𝑥𝑋 ↦ (-(𝐴 / (𝐵↑2)) · 𝐶)) = (𝑥𝑋 ↦ -((𝐴 · 𝐶) / (𝐵↑2))))
4426, 43eqtrd 2655 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵))) = (𝑥𝑋 ↦ -((𝐴 · 𝐶) / (𝐵↑2))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   ∖ cdif 3552  {csn 4148  {cpr 4150   ↦ cmpt 4673  (class class class)co 6604  ℂcc 9878  ℝcr 9879  0cc0 9880   · cmul 9885  -cneg 10211   / cdiv 10628  2c2 11014  ℤcz 11321  ↑cexp 12800   D cdv 23533 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-t1 21028  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537 This theorem is referenced by:  dvmptdiv  39435
 Copyright terms: Public domain W3C validator