Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem4 Structured version   Visualization version   GIF version

Theorem etransclem4 39792
Description: 𝐹 expressed as a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem4.a (𝜑𝐴 ⊆ ℂ)
etransclem4.p (𝜑𝑃 ∈ ℕ)
etransclem4.M (𝜑𝑀 ∈ ℕ0)
etransclem4.f 𝐹 = (𝑥𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem4.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem4.e 𝐸 = (𝑥𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
Assertion
Ref Expression
etransclem4 (𝜑𝐹 = 𝐸)
Distinct variable groups:   𝐴,𝑗,𝑥   𝑗,𝑀   𝑃,𝑗   𝜑,𝑗,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝐸(𝑥,𝑗)   𝐹(𝑥,𝑗)   𝐻(𝑥,𝑗)   𝑀(𝑥)

Proof of Theorem etransclem4
StepHypRef Expression
1 simpr 477 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
2 etransclem4.a . . . . . . . . . 10 (𝜑𝐴 ⊆ ℂ)
3 cnex 9977 . . . . . . . . . . 11 ℂ ∈ V
43ssex 4772 . . . . . . . . . 10 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
5 mptexg 6449 . . . . . . . . . 10 (𝐴 ∈ V → (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V)
62, 4, 53syl 18 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V)
76adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V)
8 etransclem4.h . . . . . . . . 9 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
98fvmpt2 6258 . . . . . . . 8 ((𝑗 ∈ (0...𝑀) ∧ (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V) → (𝐻𝑗) = (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
101, 7, 9syl2anc 692 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐻𝑗) = (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
11 ovexd 6645 . . . . . . 7 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝐴) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ V)
1210, 11fvmpt2d 6260 . . . . . 6 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝐴) → ((𝐻𝑗)‘𝑥) = ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
1312an32s 845 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐻𝑗)‘𝑥) = ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
1413prodeq2dv 14597 . . . 4 ((𝜑𝑥𝐴) → ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥) = ∏𝑗 ∈ (0...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
15 etransclem4.M . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
16 nn0uz 11682 . . . . . . 7 0 = (ℤ‘0)
1715, 16syl6eleq 2708 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘0))
1817adantr 481 . . . . 5 ((𝜑𝑥𝐴) → 𝑀 ∈ (ℤ‘0))
192sselda 3588 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
2019adantr 481 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → 𝑥 ∈ ℂ)
21 elfzelz 12300 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
2221zcnd 11443 . . . . . . . 8 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
2322adantl 482 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℂ)
2420, 23subcld 10352 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → (𝑥𝑗) ∈ ℂ)
25 etransclem4.p . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
26 nnm1nn0 11294 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
2725, 26syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℕ0)
2825nnnn0d 11311 . . . . . . . 8 (𝜑𝑃 ∈ ℕ0)
2927, 28ifcld 4109 . . . . . . 7 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
3029ad2antrr 761 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
3124, 30expcld 12964 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
32 oveq2 6623 . . . . . 6 (𝑗 = 0 → (𝑥𝑗) = (𝑥 − 0))
33 iftrue 4070 . . . . . 6 (𝑗 = 0 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
3432, 33oveq12d 6633 . . . . 5 (𝑗 = 0 → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 0)↑(𝑃 − 1)))
3518, 31, 34fprod1p 14642 . . . 4 ((𝜑𝑥𝐴) → ∏𝑗 ∈ (0...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = (((𝑥 − 0)↑(𝑃 − 1)) · ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
3619subid1d 10341 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥 − 0) = 𝑥)
3736oveq1d 6630 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥 − 0)↑(𝑃 − 1)) = (𝑥↑(𝑃 − 1)))
38 0p1e1 11092 . . . . . . . . 9 (0 + 1) = 1
3938oveq1i 6625 . . . . . . . 8 ((0 + 1)...𝑀) = (1...𝑀)
4039a1i 11 . . . . . . 7 (𝜑 → ((0 + 1)...𝑀) = (1...𝑀))
41 0red 10001 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 0 ∈ ℝ)
42 1red 10015 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 1 ∈ ℝ)
43 elfzelz 12300 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
4443zred 11442 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℝ)
45 0lt1 10510 . . . . . . . . . . . . . 14 0 < 1
4645a1i 11 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 0 < 1)
47 elfzle1 12302 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 1 ≤ 𝑗)
4841, 42, 44, 46, 47ltletrd 10157 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → 0 < 𝑗)
4948gt0ne0d 10552 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → 𝑗 ≠ 0)
5049neneqd 2795 . . . . . . . . . 10 (𝑗 ∈ (1...𝑀) → ¬ 𝑗 = 0)
5150iffalsed 4075 . . . . . . . . 9 (𝑗 ∈ (1...𝑀) → if(𝑗 = 0, (𝑃 − 1), 𝑃) = 𝑃)
5251oveq2d 6631 . . . . . . . 8 (𝑗 ∈ (1...𝑀) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝑗)↑𝑃))
5352adantl 482 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝑗)↑𝑃))
5440, 53prodeq12rdv 14601 . . . . . 6 (𝜑 → ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))
5554adantr 481 . . . . 5 ((𝜑𝑥𝐴) → ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))
5637, 55oveq12d 6633 . . . 4 ((𝜑𝑥𝐴) → (((𝑥 − 0)↑(𝑃 − 1)) · ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
5714, 35, 563eqtrrd 2660 . . 3 ((𝜑𝑥𝐴) → ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)) = ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
5857mpteq2dva 4714 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))) = (𝑥𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥)))
59 etransclem4.f . 2 𝐹 = (𝑥𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
60 etransclem4.e . 2 𝐸 = (𝑥𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
6158, 59, 603eqtr4g 2680 1 (𝜑𝐹 = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3190  wss 3560  ifcif 4064   class class class wbr 4623  cmpt 4683  cfv 5857  (class class class)co 6615  cc 9894  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901   < clt 10034  cmin 10226  cn 10980  0cn0 11252  cuz 11647  ...cfz 12284  cexp 12816  cprod 14579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-oi 8375  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-fz 12285  df-fzo 12423  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-prod 14580
This theorem is referenced by:  etransclem13  39801  etransclem29  39817
  Copyright terms: Public domain W3C validator