Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fppr2odd Structured version   Visualization version   GIF version

Theorem fppr2odd 43945
Description: A Fermat pseudoprime to the base 2 is odd. (Contributed by AV, 5-Jun-2023.)
Assertion
Ref Expression
fppr2odd (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd )

Proof of Theorem fppr2odd
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 11711 . . . 4 2 ∈ ℕ
2 fpprel 43942 . . . 4 (2 ∈ ℕ → (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)))
31, 2ax-mp 5 . . 3 (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1))
4 eluz4nn 12287 . . . . . . 7 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
54adantr 483 . . . . . 6 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → 𝑋 ∈ ℕ)
6 eluzelz 12254 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℤ)
7 zeo2ALTV 43885 . . . . . . . . 9 (𝑋 ∈ ℤ → (𝑋 ∈ Even ↔ ¬ 𝑋 ∈ Odd ))
86, 7syl 17 . . . . . . . 8 (𝑋 ∈ (ℤ‘4) → (𝑋 ∈ Even ↔ ¬ 𝑋 ∈ Odd ))
98adantr 483 . . . . . . 7 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (𝑋 ∈ Even ↔ ¬ 𝑋 ∈ Odd ))
109biimprd 250 . . . . . 6 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Even ))
11 nnennexALTV 43915 . . . . . 6 ((𝑋 ∈ ℕ ∧ 𝑋 ∈ Even ) → ∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦))
125, 10, 11syl6an 682 . . . . 5 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → ∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦)))
13 oveq1 7163 . . . . . . . . . . . . . 14 (𝑋 = (2 · 𝑦) → (𝑋 − 1) = ((2 · 𝑦) − 1))
1413oveq2d 7172 . . . . . . . . . . . . 13 (𝑋 = (2 · 𝑦) → (2↑(𝑋 − 1)) = (2↑((2 · 𝑦) − 1)))
15 id 22 . . . . . . . . . . . . 13 (𝑋 = (2 · 𝑦) → 𝑋 = (2 · 𝑦))
1614, 15oveq12d 7174 . . . . . . . . . . . 12 (𝑋 = (2 · 𝑦) → ((2↑(𝑋 − 1)) mod 𝑋) = ((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)))
1716eqeq1d 2823 . . . . . . . . . . 11 (𝑋 = (2 · 𝑦) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 ↔ ((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1))
1817adantl 484 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) ∧ 𝑋 = (2 · 𝑦)) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 ↔ ((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1))
19 2z 12015 . . . . . . . . . . . . . . 15 2 ∈ ℤ
201a1i 11 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 2 ∈ ℕ)
21 id 22 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ)
2220, 21nnmulcld 11691 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℕ)
23 nnm1nn0 11939 . . . . . . . . . . . . . . . 16 ((2 · 𝑦) ∈ ℕ → ((2 · 𝑦) − 1) ∈ ℕ0)
2422, 23syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · 𝑦) − 1) ∈ ℕ0)
25 zexpcl 13445 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ ((2 · 𝑦) − 1) ∈ ℕ0) → (2↑((2 · 𝑦) − 1)) ∈ ℤ)
2619, 24, 25sylancr 589 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2↑((2 · 𝑦) − 1)) ∈ ℤ)
2722nnrpd 12430 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ+)
28 modmuladdim 13283 . . . . . . . . . . . . . 14 (((2↑((2 · 𝑦) − 1)) ∈ ℤ ∧ (2 · 𝑦) ∈ ℝ+) → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → ∃𝑚 ∈ ℤ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
2926, 27, 28syl2anc 586 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → ∃𝑚 ∈ ℤ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
3024adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · 𝑦) − 1) ∈ ℕ0)
3119, 30, 25sylancr 589 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) ∈ ℤ)
3231zcnd 12089 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) ∈ ℂ)
33 zcn 11987 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
3433adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
35 2cnd 11716 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 2 ∈ ℂ)
36 nncn 11646 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
3736adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑦 ∈ ℂ)
3835, 37mulcld 10661 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · 𝑦) ∈ ℂ)
3934, 38mulcld 10661 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · (2 · 𝑦)) ∈ ℂ)
40 1cnd 10636 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 1 ∈ ℂ)
41 subadd 10889 . . . . . . . . . . . . . . . . 17 (((2↑((2 · 𝑦) − 1)) ∈ ℂ ∧ (𝑚 · (2 · 𝑦)) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ ((𝑚 · (2 · 𝑦)) + 1) = (2↑((2 · 𝑦) − 1))))
42 eqcom 2828 . . . . . . . . . . . . . . . . 17 (((𝑚 · (2 · 𝑦)) + 1) = (2↑((2 · 𝑦) − 1)) ↔ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1))
4341, 42syl6bb 289 . . . . . . . . . . . . . . . 16 (((2↑((2 · 𝑦) − 1)) ∈ ℂ ∧ (𝑚 · (2 · 𝑦)) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
4432, 39, 40, 43syl3anc 1367 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
45 2cnd 11716 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ℕ → 2 ∈ ℂ)
4645, 36mulcld 10661 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℂ)
47 1cnd 10636 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ → 1 ∈ ℂ)
4846, 47subcld 10997 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℕ → ((2 · 𝑦) − 1) ∈ ℂ)
4948adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · 𝑦) − 1) ∈ ℂ)
50 npcan1 11065 . . . . . . . . . . . . . . . . . . . . . . 23 (((2 · 𝑦) − 1) ∈ ℂ → ((((2 · 𝑦) − 1) − 1) + 1) = ((2 · 𝑦) − 1))
5149, 50syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((((2 · 𝑦) − 1) − 1) + 1) = ((2 · 𝑦) − 1))
5251eqcomd 2827 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · 𝑦) − 1) = ((((2 · 𝑦) − 1) − 1) + 1))
5352oveq2d 7172 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) = (2↑((((2 · 𝑦) − 1) − 1) + 1)))
54 2t1e2 11801 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2 · 1) = 2
5554eqcomi 2830 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 = (2 · 1)
5655oveq2i 7167 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 · 𝑦) − 2) = ((2 · 𝑦) − (2 · 1))
57 sub1m1 11890 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2 · 𝑦) ∈ ℂ → (((2 · 𝑦) − 1) − 1) = ((2 · 𝑦) − 2))
5838, 57syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2 · 𝑦) − 1) − 1) = ((2 · 𝑦) − 2))
5935, 37, 40subdid 11096 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · (𝑦 − 1)) = ((2 · 𝑦) − (2 · 1)))
6056, 58, 593eqtr4a 2882 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2 · 𝑦) − 1) − 1) = (2 · (𝑦 − 1)))
61 2nn0 11915 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℕ0
6261a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 2 ∈ ℕ0)
63 nnm1nn0 11939 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ → (𝑦 − 1) ∈ ℕ0)
6463adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑦 − 1) ∈ ℕ0)
6562, 64nn0mulcld 11961 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · (𝑦 − 1)) ∈ ℕ0)
6660, 65eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2 · 𝑦) − 1) − 1) ∈ ℕ0)
6735, 66expp1d 13512 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((((2 · 𝑦) − 1) − 1) + 1)) = ((2↑(((2 · 𝑦) − 1) − 1)) · 2))
6835, 66expcld 13511 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑(((2 · 𝑦) − 1) − 1)) ∈ ℂ)
6968, 35mulcomd 10662 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑(((2 · 𝑦) − 1) − 1)) · 2) = (2 · (2↑(((2 · 𝑦) − 1) − 1))))
7067, 69eqtrd 2856 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((((2 · 𝑦) − 1) − 1) + 1)) = (2 · (2↑(((2 · 𝑦) − 1) − 1))))
7153, 70eqtrd 2856 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) = (2 · (2↑(((2 · 𝑦) − 1) − 1))))
7234, 35, 37mul12d 10849 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · (2 · 𝑦)) = (2 · (𝑚 · 𝑦)))
7371, 72oveq12d 7174 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = ((2 · (2↑(((2 · 𝑦) − 1) − 1))) − (2 · (𝑚 · 𝑦))))
7434, 37mulcld 10661 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑦) ∈ ℂ)
7535, 68, 74subdid 11096 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = ((2 · (2↑(((2 · 𝑦) − 1) − 1))) − (2 · (𝑚 · 𝑦))))
7675eqcomd 2827 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · (2↑(((2 · 𝑦) − 1) − 1))) − (2 · (𝑚 · 𝑦))) = (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))))
7773, 76eqtrd 2856 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))))
7877eqeq1d 2823 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = 1))
79 zexpcl 13445 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℤ ∧ (((2 · 𝑦) − 1) − 1) ∈ ℕ0) → (2↑(((2 · 𝑦) − 1) − 1)) ∈ ℤ)
8019, 66, 79sylancr 589 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑(((2 · 𝑦) − 1) − 1)) ∈ ℤ)
81 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
82 nnz 12005 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
8382adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑦 ∈ ℤ)
8481, 83zmulcld 12094 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑦) ∈ ℤ)
8580, 84zsubcld 12093 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦)) ∈ ℤ)
86 m2even 43868 . . . . . . . . . . . . . . . . . . 19 (((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦)) ∈ ℤ → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ∈ Even )
8785, 86syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ∈ Even )
88 1oddALTV 43904 . . . . . . . . . . . . . . . . . 18 1 ∈ Odd
89 zneoALTV 43883 . . . . . . . . . . . . . . . . . 18 (((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ∈ Even ∧ 1 ∈ Odd ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ≠ 1)
9087, 88, 89sylancl 588 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ≠ 1)
91 eqneqall 3027 . . . . . . . . . . . . . . . . 17 ((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = 1 → ((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ≠ 1 → 𝑋 ∈ Odd ))
9290, 91syl5com 31 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = 1 → 𝑋 ∈ Odd ))
9378, 92sylbid 242 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 → 𝑋 ∈ Odd ))
9444, 93sylbird 262 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1) → 𝑋 ∈ Odd ))
9594rexlimdva 3284 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (∃𝑚 ∈ ℤ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1) → 𝑋 ∈ Odd ))
9629, 95syld 47 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → 𝑋 ∈ Odd ))
9796adantl 484 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → 𝑋 ∈ Odd ))
9897adantr 483 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) ∧ 𝑋 = (2 · 𝑦)) → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → 𝑋 ∈ Odd ))
9918, 98sylbid 242 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) ∧ 𝑋 = (2 · 𝑦)) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → 𝑋 ∈ Odd ))
10099ex 415 . . . . . . . 8 ((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) → (𝑋 = (2 · 𝑦) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → 𝑋 ∈ Odd )))
101100rexlimdva 3284 . . . . . . 7 (𝑋 ∈ (ℤ‘4) → (∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → 𝑋 ∈ Odd )))
102101com23 86 . . . . . 6 (𝑋 ∈ (ℤ‘4) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → (∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦) → 𝑋 ∈ Odd )))
103102imp 409 . . . . 5 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦) → 𝑋 ∈ Odd ))
10412, 103syld 47 . . . 4 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Odd ))
1051043adant2 1127 . . 3 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Odd ))
1063, 105sylbi 219 . 2 (𝑋 ∈ ( FPPr ‘2) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Odd ))
107106pm2.18d 127 1 (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wnel 3123  wrex 3139  cfv 6355  (class class class)co 7156  cc 10535  1c1 10538   + caddc 10540   · cmul 10542  cmin 10870  cn 11638  2c2 11693  4c4 11695  0cn0 11898  cz 11982  cuz 12244  +crp 12390   mod cmo 13238  cexp 13430  cprime 16015   Even ceven 43838   Odd codd 43839   FPPr cfppr 43938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-dvds 15608  df-even 43840  df-odd 43841  df-fppr 43939
This theorem is referenced by:  fpprel2  43955
  Copyright terms: Public domain W3C validator