Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodexp Structured version   Visualization version   GIF version

Theorem fprodexp 39258
Description: Positive integer exponentiation of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodexp.kph 𝑘𝜑
fprodexp.n (𝜑𝑁 ∈ ℕ0)
fprodexp.a (𝜑𝐴 ∈ Fin)
fprodexp.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fprodexp (𝜑 → ∏𝑘𝐴 (𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodexp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 14575 . . 3 (𝑥 = ∅ → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘 ∈ ∅ (𝐵𝑁))
2 prodeq1 14575 . . . 4 (𝑥 = ∅ → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
32oveq1d 6625 . . 3 (𝑥 = ∅ → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘 ∈ ∅ 𝐵𝑁))
41, 3eqeq12d 2636 . 2 (𝑥 = ∅ → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘 ∈ ∅ (𝐵𝑁) = (∏𝑘 ∈ ∅ 𝐵𝑁)))
5 prodeq1 14575 . . 3 (𝑥 = 𝑦 → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘𝑦 (𝐵𝑁))
6 prodeq1 14575 . . . 4 (𝑥 = 𝑦 → ∏𝑘𝑥 𝐵 = ∏𝑘𝑦 𝐵)
76oveq1d 6625 . . 3 (𝑥 = 𝑦 → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁))
85, 7eqeq12d 2636 . 2 (𝑥 = 𝑦 → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)))
9 prodeq1 14575 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁))
10 prodeq1 14575 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1110oveq1d 6625 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁))
129, 11eqeq12d 2636 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁)))
13 prodeq1 14575 . . 3 (𝑥 = 𝐴 → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘𝐴 (𝐵𝑁))
14 prodeq1 14575 . . . 4 (𝑥 = 𝐴 → ∏𝑘𝑥 𝐵 = ∏𝑘𝐴 𝐵)
1514oveq1d 6625 . . 3 (𝑥 = 𝐴 → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁))
1613, 15eqeq12d 2636 . 2 (𝑥 = 𝐴 → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘𝐴 (𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁)))
17 fprodexp.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
1817nn0zd 11432 . . . . 5 (𝜑𝑁 ∈ ℤ)
19 1exp 12837 . . . . 5 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
2018, 19syl 17 . . . 4 (𝜑 → (1↑𝑁) = 1)
2120eqcomd 2627 . . 3 (𝜑 → 1 = (1↑𝑁))
22 prod0 14609 . . . 4 𝑘 ∈ ∅ (𝐵𝑁) = 1
2322a1i 11 . . 3 (𝜑 → ∏𝑘 ∈ ∅ (𝐵𝑁) = 1)
24 prod0 14609 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
2524oveq1i 6620 . . . 4 (∏𝑘 ∈ ∅ 𝐵𝑁) = (1↑𝑁)
2625a1i 11 . . 3 (𝜑 → (∏𝑘 ∈ ∅ 𝐵𝑁) = (1↑𝑁))
2721, 23, 263eqtr4d 2665 . 2 (𝜑 → ∏𝑘 ∈ ∅ (𝐵𝑁) = (∏𝑘 ∈ ∅ 𝐵𝑁))
28 fprodexp.kph . . . . . . . . 9 𝑘𝜑
29 nfv 1840 . . . . . . . . 9 𝑘(𝑦𝐴𝑧 ∈ (𝐴𝑦))
3028, 29nfan 1825 . . . . . . . 8 𝑘(𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦)))
31 fprodexp.a . . . . . . . . . . 11 (𝜑𝐴 ∈ Fin)
3231adantr 481 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐴 ∈ Fin)
33 simpr 477 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝑦𝐴)
34 ssfi 8132 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
3532, 33, 34syl2anc 692 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 ∈ Fin)
3635adantrr 752 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
37 simpll 789 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝜑)
3833sselda 3587 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝑘𝐴)
39 fprodexp.b . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4037, 38, 39syl2anc 692 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
4140adantlrr 756 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
4230, 36, 41fprodclf 14659 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℂ)
43 simpl 473 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝜑)
44 simprr 795 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
4544eldifad 3571 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
46 nfv 1840 . . . . . . . . . . 11 𝑘 𝑧𝐴
4728, 46nfan 1825 . . . . . . . . . 10 𝑘(𝜑𝑧𝐴)
48 nfcsb1v 3534 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵
4948nfel1 2775 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵 ∈ ℂ
5047, 49nfim 1822 . . . . . . . . 9 𝑘((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)
51 eleq1 2686 . . . . . . . . . . 11 (𝑘 = 𝑧 → (𝑘𝐴𝑧𝐴))
5251anbi2d 739 . . . . . . . . . 10 (𝑘 = 𝑧 → ((𝜑𝑘𝐴) ↔ (𝜑𝑧𝐴)))
53 csbeq1a 3527 . . . . . . . . . . 11 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
5453eleq1d 2683 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ 𝑧 / 𝑘𝐵 ∈ ℂ))
5552, 54imbi12d 334 . . . . . . . . 9 (𝑘 = 𝑧 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)))
5650, 55, 39chvar 2261 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)
5743, 45, 56syl2anc 692 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
5817adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑁 ∈ ℕ0)
59 mulexp 12847 . . . . . . 7 ((∏𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
6042, 57, 58, 59syl3anc 1323 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
6160eqcomd 2627 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁))
6261adantr 481 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁))
63 nfcv 2761 . . . . . . . 8 𝑘
64 nfcv 2761 . . . . . . . 8 𝑘𝑁
6548, 63, 64nfov 6636 . . . . . . 7 𝑘(𝑧 / 𝑘𝐵𝑁)
6644eldifbd 3572 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
6717ad2antrr 761 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝑁 ∈ ℕ0)
6840, 67expcld 12956 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → (𝐵𝑁) ∈ ℂ)
6968adantlrr 756 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → (𝐵𝑁) ∈ ℂ)
7053oveq1d 6625 . . . . . . 7 (𝑘 = 𝑧 → (𝐵𝑁) = (𝑧 / 𝑘𝐵𝑁))
7157, 58expcld 12956 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑧 / 𝑘𝐵𝑁) ∈ ℂ)
7230, 65, 36, 44, 66, 69, 70, 71fprodsplitsn 14656 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7372adantr 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
74 oveq1 6617 . . . . . 6 (∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁) → (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7574adantl 482 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7673, 75eqtrd 2655 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7730, 48, 36, 44, 66, 41, 53, 57fprodsplitsn 14656 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
7877adantr 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
7978oveq1d 6625 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁) = ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁))
8062, 76, 793eqtr4d 2665 . . 3 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁))
8180ex 450 . 2 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁)))
824, 8, 12, 16, 27, 81, 31findcard2d 8154 1 (𝜑 → ∏𝑘𝐴 (𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wnf 1705  wcel 1987  csb 3518  cdif 3556  cun 3557  wss 3559  c0 3896  {csn 4153  (class class class)co 6610  Fincfn 7907  cc 9886  1c1 9889   · cmul 9893  0cn0 11244  cz 11329  cexp 12808  cprod 14571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-fz 12277  df-fzo 12415  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-prod 14572
This theorem is referenced by:  etransclem35  39819
  Copyright terms: Public domain W3C validator