MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumshftm Structured version   Visualization version   GIF version

Theorem fsumshftm 14712
Description: Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumrev.1 (𝜑𝐾 ∈ ℤ)
fsumrev.2 (𝜑𝑀 ∈ ℤ)
fsumrev.3 (𝜑𝑁 ∈ ℤ)
fsumrev.4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumshftm.5 (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵)
Assertion
Ref Expression
fsumshftm (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)

Proof of Theorem fsumshftm
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2902 . . 3 𝑚𝐴
2 nfcsb1v 3690 . . 3 𝑗𝑚 / 𝑗𝐴
3 csbeq1a 3683 . . 3 (𝑗 = 𝑚𝐴 = 𝑚 / 𝑗𝐴)
41, 2, 3cbvsumi 14626 . 2 Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑚 ∈ (𝑀...𝑁)𝑚 / 𝑗𝐴
5 fsumrev.1 . . . . 5 (𝜑𝐾 ∈ ℤ)
65znegcld 11676 . . . 4 (𝜑 → -𝐾 ∈ ℤ)
7 fsumrev.2 . . . 4 (𝜑𝑀 ∈ ℤ)
8 fsumrev.3 . . . 4 (𝜑𝑁 ∈ ℤ)
9 fsumrev.4 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
109ralrimiva 3104 . . . . 5 (𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
112nfel1 2917 . . . . . 6 𝑗𝑚 / 𝑗𝐴 ∈ ℂ
123eleq1d 2824 . . . . . 6 (𝑗 = 𝑚 → (𝐴 ∈ ℂ ↔ 𝑚 / 𝑗𝐴 ∈ ℂ))
1311, 12rspc 3443 . . . . 5 (𝑚 ∈ (𝑀...𝑁) → (∀𝑗 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → 𝑚 / 𝑗𝐴 ∈ ℂ))
1410, 13mpan9 487 . . . 4 ((𝜑𝑚 ∈ (𝑀...𝑁)) → 𝑚 / 𝑗𝐴 ∈ ℂ)
15 csbeq1 3677 . . . 4 (𝑚 = (𝑘 − -𝐾) → 𝑚 / 𝑗𝐴 = (𝑘 − -𝐾) / 𝑗𝐴)
166, 7, 8, 14, 15fsumshft 14711 . . 3 (𝜑 → Σ𝑚 ∈ (𝑀...𝑁)𝑚 / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))(𝑘 − -𝐾) / 𝑗𝐴)
177zcnd 11675 . . . . . 6 (𝜑𝑀 ∈ ℂ)
185zcnd 11675 . . . . . 6 (𝜑𝐾 ∈ ℂ)
1917, 18negsubd 10590 . . . . 5 (𝜑 → (𝑀 + -𝐾) = (𝑀𝐾))
208zcnd 11675 . . . . . 6 (𝜑𝑁 ∈ ℂ)
2120, 18negsubd 10590 . . . . 5 (𝜑 → (𝑁 + -𝐾) = (𝑁𝐾))
2219, 21oveq12d 6831 . . . 4 (𝜑 → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀𝐾)...(𝑁𝐾)))
2322sumeq1d 14630 . . 3 (𝜑 → Σ𝑘 ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))(𝑘 − -𝐾) / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))(𝑘 − -𝐾) / 𝑗𝐴)
24 elfzelz 12535 . . . . . . . 8 (𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾)) → 𝑘 ∈ ℤ)
2524zcnd 11675 . . . . . . 7 (𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾)) → 𝑘 ∈ ℂ)
26 subneg 10522 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑘 − -𝐾) = (𝑘 + 𝐾))
2725, 18, 26syl2anr 496 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → (𝑘 − -𝐾) = (𝑘 + 𝐾))
2827csbeq1d 3681 . . . . 5 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → (𝑘 − -𝐾) / 𝑗𝐴 = (𝑘 + 𝐾) / 𝑗𝐴)
29 ovex 6841 . . . . . 6 (𝑘 + 𝐾) ∈ V
30 fsumshftm.5 . . . . . 6 (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵)
3129, 30csbie 3700 . . . . 5 (𝑘 + 𝐾) / 𝑗𝐴 = 𝐵
3228, 31syl6eq 2810 . . . 4 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → (𝑘 − -𝐾) / 𝑗𝐴 = 𝐵)
3332sumeq2dv 14632 . . 3 (𝜑 → Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))(𝑘 − -𝐾) / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))𝐵)
3416, 23, 333eqtrd 2798 . 2 (𝜑 → Σ𝑚 ∈ (𝑀...𝑁)𝑚 / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))𝐵)
354, 34syl5eq 2806 1 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wral 3050  csb 3674  (class class class)co 6813  cc 10126   + caddc 10131  cmin 10458  -cneg 10459  cz 11569  ...cfz 12519  Σcsu 14615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616
This theorem is referenced by:  telfsumo  14733  fsumparts  14737  arisum  14791  geo2sum  14803  ovolicc2lem4  23488  uniioombllem3  23553  dvply1  24238  pserdvlem2  24381  advlogexp  24600  dchrisumlem1  25377  pntpbnd2  25475  pwdif  42011  nn0sumshdiglemA  42923  nn0sumshdiglemB  42924
  Copyright terms: Public domain W3C validator