MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem3 Structured version   Visualization version   GIF version

Theorem uniioombllem3 24186
Description: Lemma for uniioombl 24190. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombl.m (𝜑𝑀 ∈ ℕ)
uniioombl.m2 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
uniioombl.k 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
Assertion
Ref Expression
uniioombllem3 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) < (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐾   𝑥,𝐴   𝑥,𝐶   𝑥,𝑀   𝜑,𝑥   𝑥,𝑇
Allowed substitution hints:   𝑆(𝑥)   𝐸(𝑥)

Proof of Theorem uniioombllem3
Dummy variables 𝑗 𝑘 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4205 . . . . 5 (𝐸𝐴) ⊆ 𝐸
21a1i 11 . . . 4 (𝜑 → (𝐸𝐴) ⊆ 𝐸)
3 uniioombl.s . . . . 5 (𝜑𝐸 ran ((,) ∘ 𝐺))
4 uniioombl.g . . . . . . . 8 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
54uniiccdif 24179 . . . . . . 7 (𝜑 → ( ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺) ∧ (vol*‘( ran ([,] ∘ 𝐺) ∖ ran ((,) ∘ 𝐺))) = 0))
65simpld 497 . . . . . 6 (𝜑 ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺))
7 ovolficcss 24070 . . . . . . 7 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐺) ⊆ ℝ)
84, 7syl 17 . . . . . 6 (𝜑 ran ([,] ∘ 𝐺) ⊆ ℝ)
96, 8sstrd 3977 . . . . 5 (𝜑 ran ((,) ∘ 𝐺) ⊆ ℝ)
103, 9sstrd 3977 . . . 4 (𝜑𝐸 ⊆ ℝ)
11 uniioombl.e . . . 4 (𝜑 → (vol*‘𝐸) ∈ ℝ)
12 ovolsscl 24087 . . . 4 (((𝐸𝐴) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐴)) ∈ ℝ)
132, 10, 11, 12syl3anc 1367 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) ∈ ℝ)
14 difssd 4109 . . . 4 (𝜑 → (𝐸𝐴) ⊆ 𝐸)
15 ovolsscl 24087 . . . 4 (((𝐸𝐴) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐴)) ∈ ℝ)
1614, 10, 11, 15syl3anc 1367 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) ∈ ℝ)
17 inss1 4205 . . . . . 6 (𝐾𝐴) ⊆ 𝐾
1817a1i 11 . . . . 5 (𝜑 → (𝐾𝐴) ⊆ 𝐾)
19 uniioombl.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
20 uniioombl.2 . . . . . . . 8 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
21 uniioombl.3 . . . . . . . 8 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
22 uniioombl.a . . . . . . . 8 𝐴 = ran ((,) ∘ 𝐹)
23 uniioombl.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
24 uniioombl.t . . . . . . . 8 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
25 uniioombl.v . . . . . . . 8 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
26 uniioombl.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
27 uniioombl.m2 . . . . . . . 8 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
28 uniioombl.k . . . . . . . 8 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
2919, 20, 21, 22, 11, 23, 4, 3, 24, 25, 26, 27, 28uniioombllem3a 24185 . . . . . . 7 (𝜑 → (𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ∧ (vol*‘𝐾) ∈ ℝ))
3029simpld 497 . . . . . 6 (𝜑𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
31 inss2 4206 . . . . . . . . . . . . 13 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
32 elfznn 12937 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℕ)
33 ffvelrn 6849 . . . . . . . . . . . . . 14 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
344, 32, 33syl2an 597 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
3531, 34sseldi 3965 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ (ℝ × ℝ))
36 1st2nd2 7728 . . . . . . . . . . . 12 ((𝐺𝑗) ∈ (ℝ × ℝ) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
3735, 36syl 17 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
3837fveq2d 6674 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩))
39 df-ov 7159 . . . . . . . . . 10 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
4038, 39syl6eqr 2874 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))))
41 ioossre 12799 . . . . . . . . 9 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ⊆ ℝ
4240, 41eqsstrdi 4021 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
4342ralrimiva 3182 . . . . . . 7 (𝜑 → ∀𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
44 iunss 4969 . . . . . . 7 ( 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ ↔ ∀𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
4543, 44sylibr 236 . . . . . 6 (𝜑 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
4630, 45eqsstrd 4005 . . . . 5 (𝜑𝐾 ⊆ ℝ)
4729simprd 498 . . . . 5 (𝜑 → (vol*‘𝐾) ∈ ℝ)
48 ovolsscl 24087 . . . . 5 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
4918, 46, 47, 48syl3anc 1367 . . . 4 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
5023rpred 12432 . . . 4 (𝜑𝐶 ∈ ℝ)
5149, 50readdcld 10670 . . 3 (𝜑 → ((vol*‘(𝐾𝐴)) + 𝐶) ∈ ℝ)
52 difssd 4109 . . . . 5 (𝜑 → (𝐾𝐴) ⊆ 𝐾)
53 ovolsscl 24087 . . . . 5 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
5452, 46, 47, 53syl3anc 1367 . . . 4 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
5554, 50readdcld 10670 . . 3 (𝜑 → ((vol*‘(𝐾𝐴)) + 𝐶) ∈ ℝ)
56 ssun2 4149 . . . . . . 7 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
57 ioof 12836 . . . . . . . . . . . . . . 15 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
58 rexpssxrxp 10686 . . . . . . . . . . . . . . . . 17 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
5931, 58sstri 3976 . . . . . . . . . . . . . . . 16 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
60 fss 6527 . . . . . . . . . . . . . . . 16 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐺:ℕ⟶(ℝ* × ℝ*))
614, 59, 60sylancl 588 . . . . . . . . . . . . . . 15 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
62 fco 6531 . . . . . . . . . . . . . . 15 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐺:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
6357, 61, 62sylancr 589 . . . . . . . . . . . . . 14 (𝜑 → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
6463ffnd 6515 . . . . . . . . . . . . 13 (𝜑 → ((,) ∘ 𝐺) Fn ℕ)
65 fnima 6478 . . . . . . . . . . . . 13 (((,) ∘ 𝐺) Fn ℕ → (((,) ∘ 𝐺) “ ℕ) = ran ((,) ∘ 𝐺))
6664, 65syl 17 . . . . . . . . . . . 12 (𝜑 → (((,) ∘ 𝐺) “ ℕ) = ran ((,) ∘ 𝐺))
67 nnuz 12282 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
6826peano2nnd 11655 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) ∈ ℕ)
6968, 67eleqtrdi 2923 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
70 uzsplit 12980 . . . . . . . . . . . . . . . 16 ((𝑀 + 1) ∈ (ℤ‘1) → (ℤ‘1) = ((1...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))))
7169, 70syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (ℤ‘1) = ((1...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))))
7267, 71syl5eq 2868 . . . . . . . . . . . . . 14 (𝜑 → ℕ = ((1...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))))
7326nncnd 11654 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℂ)
74 ax-1cn 10595 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
75 pncan 10892 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
7673, 74, 75sylancl 588 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
7776oveq2d 7172 . . . . . . . . . . . . . . 15 (𝜑 → (1...((𝑀 + 1) − 1)) = (1...𝑀))
7877uneq1d 4138 . . . . . . . . . . . . . 14 (𝜑 → ((1...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))) = ((1...𝑀) ∪ (ℤ‘(𝑀 + 1))))
7972, 78eqtrd 2856 . . . . . . . . . . . . 13 (𝜑 → ℕ = ((1...𝑀) ∪ (ℤ‘(𝑀 + 1))))
8079imaeq2d 5929 . . . . . . . . . . . 12 (𝜑 → (((,) ∘ 𝐺) “ ℕ) = (((,) ∘ 𝐺) “ ((1...𝑀) ∪ (ℤ‘(𝑀 + 1)))))
8166, 80eqtr3d 2858 . . . . . . . . . . 11 (𝜑 → ran ((,) ∘ 𝐺) = (((,) ∘ 𝐺) “ ((1...𝑀) ∪ (ℤ‘(𝑀 + 1)))))
82 imaundi 6008 . . . . . . . . . . 11 (((,) ∘ 𝐺) “ ((1...𝑀) ∪ (ℤ‘(𝑀 + 1)))) = ((((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
8381, 82syl6eq 2872 . . . . . . . . . 10 (𝜑 → ran ((,) ∘ 𝐺) = ((((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
8483unieqd 4852 . . . . . . . . 9 (𝜑 ran ((,) ∘ 𝐺) = ((((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
85 uniun 4861 . . . . . . . . 9 ((((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) = ( (((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
8684, 85syl6eq 2872 . . . . . . . 8 (𝜑 ran ((,) ∘ 𝐺) = ( (((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
8728uneq1i 4135 . . . . . . . 8 (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) = ( (((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
8886, 87syl6eqr 2874 . . . . . . 7 (𝜑 ran ((,) ∘ 𝐺) = (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
8956, 88sseqtrrid 4020 . . . . . 6 (𝜑 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ 𝐺))
9019, 20, 21, 22, 11, 23, 4, 3, 24, 25uniioombllem1 24182 . . . . . . 7 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
91 ssid 3989 . . . . . . . 8 ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)
9224ovollb 24080 . . . . . . . 8 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)) → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
934, 91, 92sylancl 588 . . . . . . 7 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
94 ovollecl 24084 . . . . . . 7 (( ran ((,) ∘ 𝐺) ⊆ ℝ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < )) → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
959, 90, 93, 94syl3anc 1367 . . . . . 6 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
96 ovolsscl 24087 . . . . . 6 (( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ)
9789, 9, 95, 96syl3anc 1367 . . . . 5 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ)
9849, 97readdcld 10670 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
99 unss1 4155 . . . . . . . 8 ((𝐾𝐴) ⊆ 𝐾 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
10017, 99ax-mp 5 . . . . . . 7 ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
101100, 88sseqtrrid 4020 . . . . . 6 (𝜑 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ran ((,) ∘ 𝐺))
102 ovolsscl 24087 . . . . . 6 ((((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
103101, 9, 95, 102syl3anc 1367 . . . . 5 (𝜑 → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
1043, 88sseqtrd 4007 . . . . . . . 8 (𝜑𝐸 ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
105104ssrind 4212 . . . . . . 7 (𝜑 → (𝐸𝐴) ⊆ ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∩ 𝐴))
106 indir 4252 . . . . . . . 8 ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∩ 𝐴) = ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴))
107 inss1 4205 . . . . . . . . 9 ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴) ⊆ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))
108 unss2 4157 . . . . . . . . 9 (( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴) ⊆ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) → ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴)) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
109107, 108ax-mp 5 . . . . . . . 8 ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴)) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
110106, 109eqsstri 4001 . . . . . . 7 ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∩ 𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
111105, 110sstrdi 3979 . . . . . 6 (𝜑 → (𝐸𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
112101, 9sstrd 3977 . . . . . 6 (𝜑 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ℝ)
113 ovolss 24086 . . . . . 6 (((𝐸𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∧ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ℝ) → (vol*‘(𝐸𝐴)) ≤ (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
114111, 112, 113syl2anc 586 . . . . 5 (𝜑 → (vol*‘(𝐸𝐴)) ≤ (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
11518, 46sstrd 3977 . . . . . 6 (𝜑 → (𝐾𝐴) ⊆ ℝ)
11689, 9sstrd 3977 . . . . . 6 (𝜑 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ℝ)
117 ovolun 24100 . . . . . 6 ((((𝐾𝐴) ⊆ ℝ ∧ (vol*‘(𝐾𝐴)) ∈ ℝ) ∧ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ℝ ∧ (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ)) → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
118115, 49, 116, 97, 117syl22anc 836 . . . . 5 (𝜑 → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
11913, 103, 98, 114, 118letrd 10797 . . . 4 (𝜑 → (vol*‘(𝐸𝐴)) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
120 rge0ssre 12845 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
121 eqid 2821 . . . . . . . . . . 11 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
122121, 24ovolsf 24073 . . . . . . . . . 10 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
1234, 122syl 17 . . . . . . . . 9 (𝜑𝑇:ℕ⟶(0[,)+∞))
124123, 26ffvelrnd 6852 . . . . . . . 8 (𝜑 → (𝑇𝑀) ∈ (0[,)+∞))
125120, 124sseldi 3965 . . . . . . 7 (𝜑 → (𝑇𝑀) ∈ ℝ)
12690, 125resubcld 11068 . . . . . 6 (𝜑 → (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ∈ ℝ)
12797rexrd 10691 . . . . . . 7 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ*)
128 id 22 . . . . . . . . . . . . . 14 (𝑧 ∈ ℕ → 𝑧 ∈ ℕ)
129 nnaddcl 11661 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑧 + 𝑀) ∈ ℕ)
130128, 26, 129syl2anr 598 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℕ) → (𝑧 + 𝑀) ∈ ℕ)
1314ffvelrnda 6851 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 + 𝑀) ∈ ℕ) → (𝐺‘(𝑧 + 𝑀)) ∈ ( ≤ ∩ (ℝ × ℝ)))
132130, 131syldan 593 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℕ) → (𝐺‘(𝑧 + 𝑀)) ∈ ( ≤ ∩ (ℝ × ℝ)))
133132fmpttd 6879 . . . . . . . . . . 11 (𝜑 → (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
134 eqid 2821 . . . . . . . . . . . 12 ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))) = ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
135 eqid 2821 . . . . . . . . . . . 12 seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) = seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
136134, 135ovolsf 24073 . . . . . . . . . . 11 ((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))):ℕ⟶(0[,)+∞))
137133, 136syl 17 . . . . . . . . . 10 (𝜑 → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))):ℕ⟶(0[,)+∞))
138137frnd 6521 . . . . . . . . 9 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) ⊆ (0[,)+∞))
139 icossxr 12822 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ*
140138, 139sstrdi 3979 . . . . . . . 8 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) ⊆ ℝ*)
141 supxrcl 12709 . . . . . . . 8 (ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ∈ ℝ*)
142140, 141syl 17 . . . . . . 7 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ∈ ℝ*)
143126rexrd 10691 . . . . . . 7 (𝜑 → (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ∈ ℝ*)
144 1zzd 12014 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 1 ∈ ℤ)
14526nnzd 12087 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℤ)
146145adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℤ)
147 addcom 10826 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + 1) = (1 + 𝑀))
14873, 74, 147sylancl 588 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑀 + 1) = (1 + 𝑀))
149148fveq2d 6674 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (ℤ‘(𝑀 + 1)) = (ℤ‘(1 + 𝑀)))
150149eleq2d 2898 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥 ∈ (ℤ‘(𝑀 + 1)) ↔ 𝑥 ∈ (ℤ‘(1 + 𝑀))))
151150biimpa 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ (ℤ‘(1 + 𝑀)))
152 eluzsub 12275 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ‘(1 + 𝑀))) → (𝑥𝑀) ∈ (ℤ‘1))
153144, 146, 151, 152syl3anc 1367 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝑥𝑀) ∈ (ℤ‘1))
154153, 67eleqtrrdi 2924 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝑥𝑀) ∈ ℕ)
155 eluzelz 12254 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℤ‘(𝑀 + 1)) → 𝑥 ∈ ℤ)
156155adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℤ)
157156zcnd 12089 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℂ)
15873adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℂ)
159157, 158npcand 11001 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → ((𝑥𝑀) + 𝑀) = 𝑥)
160159eqcomd 2827 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 = ((𝑥𝑀) + 𝑀))
161 oveq1 7163 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑥𝑀) → (𝑧 + 𝑀) = ((𝑥𝑀) + 𝑀))
162161rspceeqv 3638 . . . . . . . . . . . . . . . . 17 (((𝑥𝑀) ∈ ℕ ∧ 𝑥 = ((𝑥𝑀) + 𝑀)) → ∃𝑧 ∈ ℕ 𝑥 = (𝑧 + 𝑀))
163154, 160, 162syl2anc 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → ∃𝑧 ∈ ℕ 𝑥 = (𝑧 + 𝑀))
164 eqid 2821 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)) = (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))
165164elrnmpt 5828 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ V → (𝑥 ∈ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)) ↔ ∃𝑧 ∈ ℕ 𝑥 = (𝑧 + 𝑀)))
166165elv 3499 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)) ↔ ∃𝑧 ∈ ℕ 𝑥 = (𝑧 + 𝑀))
167163, 166sylibr 236 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)))
168167ex 415 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (ℤ‘(𝑀 + 1)) → 𝑥 ∈ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))))
169168ssrdv 3973 . . . . . . . . . . . . 13 (𝜑 → (ℤ‘(𝑀 + 1)) ⊆ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)))
170 imass2 5965 . . . . . . . . . . . . 13 ((ℤ‘(𝑀 + 1)) ⊆ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)) → (𝐺 “ (ℤ‘(𝑀 + 1))) ⊆ (𝐺 “ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))))
171169, 170syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐺 “ (ℤ‘(𝑀 + 1))) ⊆ (𝐺 “ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))))
172 rnco2 6106 . . . . . . . . . . . . 13 ran (𝐺 ∘ (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))) = (𝐺 “ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)))
1734, 130cofmpt 6894 . . . . . . . . . . . . . 14 (𝜑 → (𝐺 ∘ (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))) = (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
174173rneqd 5808 . . . . . . . . . . . . 13 (𝜑 → ran (𝐺 ∘ (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))) = ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
175172, 174syl5eqr 2870 . . . . . . . . . . . 12 (𝜑 → (𝐺 “ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))) = ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
176171, 175sseqtrd 4007 . . . . . . . . . . 11 (𝜑 → (𝐺 “ (ℤ‘(𝑀 + 1))) ⊆ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
177 imass2 5965 . . . . . . . . . . 11 ((𝐺 “ (ℤ‘(𝑀 + 1))) ⊆ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))) → ((,) “ (𝐺 “ (ℤ‘(𝑀 + 1)))) ⊆ ((,) “ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
178176, 177syl 17 . . . . . . . . . 10 (𝜑 → ((,) “ (𝐺 “ (ℤ‘(𝑀 + 1)))) ⊆ ((,) “ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
179 imaco 6104 . . . . . . . . . 10 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) = ((,) “ (𝐺 “ (ℤ‘(𝑀 + 1))))
180 rnco2 6106 . . . . . . . . . 10 ran ((,) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))) = ((,) “ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
181178, 179, 1803sstr4g 4012 . . . . . . . . 9 (𝜑 → (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
182181unissd 4848 . . . . . . . 8 (𝜑 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
183135ovollb 24080 . . . . . . . 8 (((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ))
184133, 182, 183syl2anc 586 . . . . . . 7 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ))
185123frnd 6521 . . . . . . . . . . . . 13 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
186185, 139sstrdi 3979 . . . . . . . . . . . 12 (𝜑 → ran 𝑇 ⊆ ℝ*)
18724fveq1i 6671 . . . . . . . . . . . . . 14 (𝑇‘(𝑀 + 𝑛)) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘(𝑀 + 𝑛))
18826nnred 11653 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℝ)
189188ltp1d 11570 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 < (𝑀 + 1))
190 fzdisj 12935 . . . . . . . . . . . . . . . . . 18 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...(𝑀 + 𝑛))) = ∅)
191189, 190syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...(𝑀 + 𝑛))) = ∅)
192191adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → ((1...𝑀) ∩ ((𝑀 + 1)...(𝑀 + 𝑛))) = ∅)
193 nnnn0 11905 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
194 nn0addge1 11944 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℝ ∧ 𝑛 ∈ ℕ0) → 𝑀 ≤ (𝑀 + 𝑛))
195188, 193, 194syl2an 597 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑀 ≤ (𝑀 + 𝑛))
19626adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℕ)
197196, 67eleqtrdi 2923 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ (ℤ‘1))
198 nnaddcl 11661 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 + 𝑛) ∈ ℕ)
19926, 198sylan 582 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 𝑛) ∈ ℕ)
200199nnzd 12087 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 𝑛) ∈ ℤ)
201 elfz5 12901 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ (ℤ‘1) ∧ (𝑀 + 𝑛) ∈ ℤ) → (𝑀 ∈ (1...(𝑀 + 𝑛)) ↔ 𝑀 ≤ (𝑀 + 𝑛)))
202197, 200, 201syl2anc 586 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (𝑀 ∈ (1...(𝑀 + 𝑛)) ↔ 𝑀 ≤ (𝑀 + 𝑛)))
203195, 202mpbird 259 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ (1...(𝑀 + 𝑛)))
204 fzsplit 12934 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (1...(𝑀 + 𝑛)) → (1...(𝑀 + 𝑛)) = ((1...𝑀) ∪ ((𝑀 + 1)...(𝑀 + 𝑛))))
205203, 204syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (1...(𝑀 + 𝑛)) = ((1...𝑀) ∪ ((𝑀 + 1)...(𝑀 + 𝑛))))
206 fzfid 13342 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (1...(𝑀 + 𝑛)) ∈ Fin)
2074adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
208 elfznn 12937 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (1...(𝑀 + 𝑛)) → 𝑗 ∈ ℕ)
209 ovolfcl 24067 . . . . . . . . . . . . . . . . . . . 20 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
210207, 208, 209syl2an 597 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
211210simp2d 1139 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
212210simp1d 1138 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → (1st ‘(𝐺𝑗)) ∈ ℝ)
213211, 212resubcld 11068 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
214213recnd 10669 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℂ)
215192, 205, 206, 214fsumsplit 15097 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ (1...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (Σ𝑗 ∈ (1...𝑀)((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) + Σ𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗)))))
216121ovolfsval 24071 . . . . . . . . . . . . . . . . 17 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑗) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
217207, 208, 216syl2an 597 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → (((abs ∘ − ) ∘ 𝐺)‘𝑗) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
218199, 67eleqtrdi 2923 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 𝑛) ∈ (ℤ‘1))
219217, 218, 214fsumser 15087 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ (1...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘(𝑀 + 𝑛)))
2204ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
22132adantl 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ ℕ)
222220, 221, 216syl2anc 586 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → (((abs ∘ − ) ∘ 𝐺)‘𝑗) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
2234, 32, 209syl2an 597 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (1...𝑀)) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
224223simp2d 1139 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (1...𝑀)) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
225223simp1d 1138 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (1...𝑀)) → (1st ‘(𝐺𝑗)) ∈ ℝ)
226224, 225resubcld 11068 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
227226adantlr 713 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
228227recnd 10669 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℂ)
229222, 197, 228fsumser 15087 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ (1...𝑀)((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑀))
23024fveq1i 6671 . . . . . . . . . . . . . . . . 17 (𝑇𝑀) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑀)
231229, 230syl6eqr 2874 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ (1...𝑀)((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (𝑇𝑀))
232196nnzd 12087 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℤ)
233232peano2zd 12091 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 1) ∈ ℤ)
2344ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
235196peano2nnd 11655 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 1) ∈ ℕ)
236 elfzuz 12905 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛)) → 𝑗 ∈ (ℤ‘(𝑀 + 1)))
237 eluznn 12319 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 + 1) ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(𝑀 + 1))) → 𝑗 ∈ ℕ)
238235, 236, 237syl2an 597 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → 𝑗 ∈ ℕ)
239234, 238, 209syl2anc 586 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
240239simp2d 1139 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
241239simp1d 1138 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → (1st ‘(𝐺𝑗)) ∈ ℝ)
242240, 241resubcld 11068 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
243242recnd 10669 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℂ)
244 2fveq3 6675 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑘 + 𝑀) → (2nd ‘(𝐺𝑗)) = (2nd ‘(𝐺‘(𝑘 + 𝑀))))
245 2fveq3 6675 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑘 + 𝑀) → (1st ‘(𝐺𝑗)) = (1st ‘(𝐺‘(𝑘 + 𝑀))))
246244, 245oveq12d 7174 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑘 + 𝑀) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
247232, 233, 200, 243, 246fsumshftm 15136 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = Σ𝑘 ∈ (((𝑀 + 1) − 𝑀)...((𝑀 + 𝑛) − 𝑀))((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
248196nncnd 11654 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℂ)
249 pncan2 10893 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 𝑀) = 1)
250248, 74, 249sylancl 588 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ((𝑀 + 1) − 𝑀) = 1)
251 nncn 11646 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
252251adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
253248, 252pncan2d 10999 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ((𝑀 + 𝑛) − 𝑀) = 𝑛)
254250, 253oveq12d 7174 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (((𝑀 + 1) − 𝑀)...((𝑀 + 𝑛) − 𝑀)) = (1...𝑛))
255254sumeq1d 15058 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (((𝑀 + 1) − 𝑀)...((𝑀 + 𝑛) − 𝑀))((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))) = Σ𝑘 ∈ (1...𝑛)((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
256133adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
257 elfznn 12937 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
258134ovolfsval 24071 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑘 ∈ ℕ) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))‘𝑘) = ((2nd ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) − (1st ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘))))
259256, 257, 258syl2an 597 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))‘𝑘) = ((2nd ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) − (1st ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘))))
260257adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
261 fvoveq1 7179 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑘 → (𝐺‘(𝑧 + 𝑀)) = (𝐺‘(𝑘 + 𝑀)))
262 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))) = (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))
263 fvex 6683 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺‘(𝑘 + 𝑀)) ∈ V
264261, 262, 263fvmpt 6768 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ → ((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘) = (𝐺‘(𝑘 + 𝑀)))
265260, 264syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘) = (𝐺‘(𝑘 + 𝑀)))
266265fveq2d 6674 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (2nd ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) = (2nd ‘(𝐺‘(𝑘 + 𝑀))))
267265fveq2d 6674 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (1st ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) = (1st ‘(𝐺‘(𝑘 + 𝑀))))
268266, 267oveq12d 7174 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((2nd ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) − (1st ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘))) = ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
269259, 268eqtrd 2856 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))‘𝑘) = ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
270 simpr 487 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
271270, 67eleqtrdi 2923 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
2724ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
273 nnaddcl 11661 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘 + 𝑀) ∈ ℕ)
274257, 196, 273syl2anr 598 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 + 𝑀) ∈ ℕ)
275 ovolfcl 24067 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝑘 + 𝑀) ∈ ℕ) → ((1st ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ ∧ (2nd ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ ∧ (1st ‘(𝐺‘(𝑘 + 𝑀))) ≤ (2nd ‘(𝐺‘(𝑘 + 𝑀)))))
276272, 274, 275syl2anc 586 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((1st ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ ∧ (2nd ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ ∧ (1st ‘(𝐺‘(𝑘 + 𝑀))) ≤ (2nd ‘(𝐺‘(𝑘 + 𝑀)))))
277276simp2d 1139 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (2nd ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ)
278276simp1d 1138 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (1st ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ)
279277, 278resubcld 11068 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))) ∈ ℝ)
280279recnd 10669 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))) ∈ ℂ)
281269, 271, 280fsumser 15087 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))) = (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛))
282247, 255, 2813eqtrd 2860 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛))
283231, 282oveq12d 7174 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (Σ𝑗 ∈ (1...𝑀)((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) + Σ𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗)))) = ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)))
284215, 219, 2833eqtr3d 2864 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘(𝑀 + 𝑛)) = ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)))
285187, 284syl5eq 2868 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝑇‘(𝑀 + 𝑛)) = ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)))
286123ffnd 6515 . . . . . . . . . . . . . 14 (𝜑𝑇 Fn ℕ)
287 fnfvelrn 6848 . . . . . . . . . . . . . 14 ((𝑇 Fn ℕ ∧ (𝑀 + 𝑛) ∈ ℕ) → (𝑇‘(𝑀 + 𝑛)) ∈ ran 𝑇)
288286, 199, 287syl2an2r 683 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝑇‘(𝑀 + 𝑛)) ∈ ran 𝑇)
289285, 288eqeltrrd 2914 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ∈ ran 𝑇)
290 supxrub 12718 . . . . . . . . . . . 12 ((ran 𝑇 ⊆ ℝ* ∧ ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ∈ ran 𝑇) → ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ≤ sup(ran 𝑇, ℝ*, < ))
291186, 289, 290syl2an2r 683 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ≤ sup(ran 𝑇, ℝ*, < ))
292125adantr 483 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑀) ∈ ℝ)
293137ffvelrnda 6851 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ∈ (0[,)+∞))
294120, 293sseldi 3965 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ∈ ℝ)
29590adantr 483 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
296292, 294, 295leaddsub2d 11242 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ≤ sup(ran 𝑇, ℝ*, < ) ↔ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
297291, 296mpbid 234 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
298297ralrimiva 3182 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
299137ffnd 6515 . . . . . . . . . 10 (𝜑 → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) Fn ℕ)
300 breq1 5069 . . . . . . . . . . 11 (𝑥 = (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) → (𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
301300ralrn 6854 . . . . . . . . . 10 (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) Fn ℕ → (∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ ∀𝑛 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
302299, 301syl 17 . . . . . . . . 9 (𝜑 → (∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ ∀𝑛 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
303298, 302mpbird 259 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
304 supxrleub 12720 . . . . . . . . 9 ((ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) ⊆ ℝ* ∧ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ∈ ℝ*) → (sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ ∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
305140, 143, 304syl2anc 586 . . . . . . . 8 (𝜑 → (sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ ∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
306303, 305mpbird 259 . . . . . . 7 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
307127, 142, 143, 184, 306xrletrd 12556 . . . . . 6 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
308125, 90, 50absdifltd 14793 . . . . . . . . 9 (𝜑 → ((abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶 ↔ ((sup(ran 𝑇, ℝ*, < ) − 𝐶) < (𝑇𝑀) ∧ (𝑇𝑀) < (sup(ran 𝑇, ℝ*, < ) + 𝐶))))
30927, 308mpbid 234 . . . . . . . 8 (𝜑 → ((sup(ran 𝑇, ℝ*, < ) − 𝐶) < (𝑇𝑀) ∧ (𝑇𝑀) < (sup(ran 𝑇, ℝ*, < ) + 𝐶)))
310309simpld 497 . . . . . . 7 (𝜑 → (sup(ran 𝑇, ℝ*, < ) − 𝐶) < (𝑇𝑀))
31190, 50, 125, 310ltsub23d 11245 . . . . . 6 (𝜑 → (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) < 𝐶)
31297, 126, 50, 307, 311lelttrd 10798 . . . . 5 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) < 𝐶)
31397, 50, 49, 312ltadd2dd 10799 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) < ((vol*‘(𝐾𝐴)) + 𝐶))
31413, 98, 51, 119, 313lelttrd 10798 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) < ((vol*‘(𝐾𝐴)) + 𝐶))
31554, 97readdcld 10670 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
316 difss 4108 . . . . . . . 8 (𝐾𝐴) ⊆ 𝐾
317 unss1 4155 . . . . . . . 8 ((𝐾𝐴) ⊆ 𝐾 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
318316, 317ax-mp 5 . . . . . . 7 ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
319318, 88sseqtrrid 4020 . . . . . 6 (𝜑 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ran ((,) ∘ 𝐺))
320 ovolsscl 24087 . . . . . 6 ((((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
321319, 9, 95, 320syl3anc 1367 . . . . 5 (𝜑 → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
322104ssdifd 4117 . . . . . . 7 (𝜑 → (𝐸𝐴) ⊆ ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∖ 𝐴))
323 difundir 4257 . . . . . . . 8 ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∖ 𝐴) = ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴))
324 difss 4108 . . . . . . . . 9 ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴) ⊆ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))
325 unss2 4157 . . . . . . . . 9 (( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴) ⊆ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) → ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴)) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
326324, 325ax-mp 5 . . . . . . . 8 ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴)) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
327323, 326eqsstri 4001 . . . . . . 7 ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∖ 𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
328322, 327sstrdi 3979 . . . . . 6 (𝜑 → (𝐸𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
329319, 9sstrd 3977 . . . . . 6 (𝜑 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ℝ)
330 ovolss 24086 . . . . . 6 (((𝐸𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∧ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ℝ) → (vol*‘(𝐸𝐴)) ≤ (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
331328, 329, 330syl2anc 586 . . . . 5 (𝜑 → (vol*‘(𝐸𝐴)) ≤ (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
33252, 46sstrd 3977 . . . . . 6 (𝜑 → (𝐾𝐴) ⊆ ℝ)
333 ovolun 24100 . . . . . 6 ((((𝐾𝐴) ⊆ ℝ ∧ (vol*‘(𝐾𝐴)) ∈ ℝ) ∧ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ℝ ∧ (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ)) → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
334332, 54, 116, 97, 333syl22anc 836 . . . . 5 (𝜑 → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
33516, 321, 315, 331, 334letrd 10797 . . . 4 (𝜑 → (vol*‘(𝐸𝐴)) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
33697, 50, 54, 312ltadd2dd 10799 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) < ((vol*‘(𝐾𝐴)) + 𝐶))
33716, 315, 55, 335, 336lelttrd 10798 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) < ((vol*‘(𝐾𝐴)) + 𝐶))
33813, 16, 51, 55, 314, 337lt2addd 11263 . 2 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) < (((vol*‘(𝐾𝐴)) + 𝐶) + ((vol*‘(𝐾𝐴)) + 𝐶)))
33949recnd 10669 . . 3 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℂ)
34050recnd 10669 . . 3 (𝜑𝐶 ∈ ℂ)
34154recnd 10669 . . 3 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℂ)
342339, 340, 341, 340add4d 10868 . 2 (𝜑 → (((vol*‘(𝐾𝐴)) + 𝐶) + ((vol*‘(𝐾𝐴)) + 𝐶)) = (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
343338, 342breqtrd 5092 1 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) < (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539  cop 4573   cuni 4838   ciun 4919  Disj wdisj 5031   class class class wbr 5066  cmpt 5146   × cxp 5553  ran crn 5556  cima 5558  ccom 5559   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  1st c1st 7687  2nd c2nd 7688  supcsup 8904  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676  cmin 10870  cn 11638  0cn0 11898  cz 11982  cuz 12244  +crp 12390  (,)cioo 12739  [,)cico 12741  [,]cicc 12742  ...cfz 12893  seqcseq 13370  abscabs 14593  Σcsu 15042  vol*covol 24063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-acn 9371  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-rest 16696  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-bases 21554  df-cmp 21995  df-ovol 24065  df-vol 24066
This theorem is referenced by:  uniioombllem5  24188
  Copyright terms: Public domain W3C validator