MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzsplit2 Structured version   Visualization version   GIF version

Theorem fzsplit2 12922
Description: Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
fzsplit2 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))

Proof of Theorem fzsplit2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 12898 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
21zred 12074 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ)
3 eluzel2 12235 . . . . . . . 8 (𝑁 ∈ (ℤ𝐾) → 𝐾 ∈ ℤ)
43adantl 484 . . . . . . 7 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∈ ℤ)
54zred 12074 . . . . . 6 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∈ ℝ)
6 lelttric 10733 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑥𝐾𝐾 < 𝑥))
72, 5, 6syl2anr 598 . . . . 5 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥𝐾𝐾 < 𝑥))
8 elfzuz 12894 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (ℤ𝑀))
9 elfz5 12890 . . . . . . 7 ((𝑥 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑥 ∈ (𝑀...𝐾) ↔ 𝑥𝐾))
108, 4, 9syl2anr 598 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...𝐾) ↔ 𝑥𝐾))
11 simpl 485 . . . . . . . . 9 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ (ℤ𝑀))
12 eluzelz 12240 . . . . . . . . 9 ((𝐾 + 1) ∈ (ℤ𝑀) → (𝐾 + 1) ∈ ℤ)
1311, 12syl 17 . . . . . . . 8 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ ℤ)
14 eluz 12244 . . . . . . . 8 (((𝐾 + 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑥))
1513, 1, 14syl2an 597 . . . . . . 7 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑥))
16 elfzuz3 12895 . . . . . . . . 9 (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑥))
1716adantl 484 . . . . . . . 8 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝑥))
18 elfzuzb 12892 . . . . . . . . 9 (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ (𝑥 ∈ (ℤ‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ𝑥)))
1918rbaib 541 . . . . . . . 8 (𝑁 ∈ (ℤ𝑥) → (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ 𝑥 ∈ (ℤ‘(𝐾 + 1))))
2017, 19syl 17 . . . . . . 7 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ 𝑥 ∈ (ℤ‘(𝐾 + 1))))
21 zltp1le 12019 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐾 < 𝑥 ↔ (𝐾 + 1) ≤ 𝑥))
224, 1, 21syl2an 597 . . . . . . 7 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾 < 𝑥 ↔ (𝐾 + 1) ≤ 𝑥))
2315, 20, 223bitr4d 313 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ 𝐾 < 𝑥))
2410, 23orbi12d 915 . . . . 5 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁)) ↔ (𝑥𝐾𝐾 < 𝑥)))
257, 24mpbird 259 . . . 4 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁)))
26 elfzuz 12894 . . . . . . 7 (𝑥 ∈ (𝑀...𝐾) → 𝑥 ∈ (ℤ𝑀))
2726adantl 484 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝐾)) → 𝑥 ∈ (ℤ𝑀))
28 simpr 487 . . . . . . 7 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ (ℤ𝐾))
29 elfzuz3 12895 . . . . . . 7 (𝑥 ∈ (𝑀...𝐾) → 𝐾 ∈ (ℤ𝑥))
30 uztrn 12248 . . . . . . 7 ((𝑁 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑥)) → 𝑁 ∈ (ℤ𝑥))
3128, 29, 30syl2an 597 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝐾)) → 𝑁 ∈ (ℤ𝑥))
32 elfzuzb 12892 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝑥)))
3327, 31, 32sylanbrc 585 . . . . 5 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝐾)) → 𝑥 ∈ (𝑀...𝑁))
34 elfzuz 12894 . . . . . . 7 (𝑥 ∈ ((𝐾 + 1)...𝑁) → 𝑥 ∈ (ℤ‘(𝐾 + 1)))
35 uztrn 12248 . . . . . . 7 ((𝑥 ∈ (ℤ‘(𝐾 + 1)) ∧ (𝐾 + 1) ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
3634, 11, 35syl2anr 598 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑥 ∈ (ℤ𝑀))
37 elfzuz3 12895 . . . . . . 7 (𝑥 ∈ ((𝐾 + 1)...𝑁) → 𝑁 ∈ (ℤ𝑥))
3837adantl 484 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑁 ∈ (ℤ𝑥))
3936, 38, 32sylanbrc 585 . . . . 5 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
4033, 39jaodan 954 . . . 4 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁))) → 𝑥 ∈ (𝑀...𝑁))
4125, 40impbida 799 . . 3 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁))))
42 elun 4113 . . 3 (𝑥 ∈ ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)) ↔ (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁)))
4341, 42syl6bbr 291 . 2 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁))))
4443eqrdv 2819 1 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  cun 3922   class class class wbr 5052  cfv 6341  (class class class)co 7142  cr 10522  1c1 10524   + caddc 10526   < clt 10661  cle 10662  cz 11968  cuz 12230  ...cfz 12882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-n0 11885  df-z 11969  df-uz 12231  df-fz 12883
This theorem is referenced by:  fzsplit  12923  fzpred  12945  fz0to4untppr  13000  fallfacval4  15382  fsumharmonic  25575  gausslemma2dlem6  25934  dchrisum0lem1b  26077  dchrisum0lem1  26078  dchrisum0lem3  26081  pntrsumbnd2  26129  pntrlog2bndlem6a  26144  pntlemf  26167  fzspl  30499  poimirlem1  34927  poimirlem2  34928  poimirlem3  34929  poimirlem4  34930  poimirlem6  34932  poimirlem7  34933  poimirlem8  34934  poimirlem12  34938  poimirlem13  34939  poimirlem14  34940  poimirlem16  34942  poimirlem17  34943  poimirlem18  34944  poimirlem19  34945  poimirlem20  34946  poimirlem21  34947  poimirlem22  34948  poimirlem23  34949  poimirlem24  34950  poimirlem25  34951  poimirlem26  34952  poimirlem28  34954  poimirlem29  34955  poimirlem31  34957  poimirlem32  34958
  Copyright terms: Public domain W3C validator