Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem24 Structured version   Visualization version   GIF version

Theorem poimirlem24 34931
Description: Lemma for poimir 34940, two ways of expressing that a simplex has an admissible face on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem28.1 (𝑝 = ((1st𝑠) ∘f + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶)
poimirlem28.2 ((𝜑𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁))
poimirlem25.3 (𝜑𝑇:(1...𝑁)⟶(0..^𝐾))
poimirlem25.4 (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))
poimirlem24.5 (𝜑𝑉 ∈ (0...𝑁))
Assertion
Ref Expression
poimirlem24 (𝜑 → (∃𝑥 ∈ (((0...𝐾) ↑m (1...𝑁)) ↑m (0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝𝑁) ≠ 0)) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶 ∧ ¬ (𝑉 = 𝑁 ∧ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁)))))
Distinct variable groups:   𝑖,𝑗,𝑝,𝑠,𝑥,𝑦,𝜑   𝑗,𝑁,𝑦   𝑇,𝑗,𝑦   𝑈,𝑗,𝑦   𝑗,𝑉,𝑦   𝜑,𝑖,𝑝,𝑠   𝐵,𝑖,𝑗,𝑠   𝑖,𝐾,𝑗,𝑝,𝑠   𝑖,𝑁,𝑝,𝑠   𝑇,𝑖,𝑝   𝑈,𝑖,𝑝   𝑇,𝑠   𝜑,𝑥   𝑥,𝐵,𝑦   𝐶,𝑖,𝑝,𝑥,𝑦   𝑥,𝐾,𝑦   𝑥,𝑁   𝑥,𝑇   𝑈,𝑠,𝑥   𝑖,𝑉,𝑝,𝑠,𝑥
Allowed substitution hints:   𝐵(𝑝)   𝐶(𝑗,𝑠)

Proof of Theorem poimirlem24
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . . . . . 9 𝑗(𝜑𝑦 ∈ (0...(𝑁 − 1)))
2 nfcsb1v 3907 . . . . . . . . . 10 𝑗𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))
3 nfcv 2977 . . . . . . . . . 10 𝑗(1...𝑁)
4 nfcv 2977 . . . . . . . . . 10 𝑗(0...𝐾)
52, 3, 4nff 6510 . . . . . . . . 9 𝑗𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)
61, 5nfim 1897 . . . . . . . 8 𝑗((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾))
7 eleq1 2900 . . . . . . . . . 10 (𝑗 = 𝑦 → (𝑗 ∈ (0...(𝑁 − 1)) ↔ 𝑦 ∈ (0...(𝑁 − 1))))
87anbi2d 630 . . . . . . . . 9 (𝑗 = 𝑦 → ((𝜑𝑗 ∈ (0...(𝑁 − 1))) ↔ (𝜑𝑦 ∈ (0...(𝑁 − 1)))))
9 csbeq1a 3897 . . . . . . . . . 10 (𝑗 = 𝑦 → (𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
109feq1d 6499 . . . . . . . . 9 (𝑗 = 𝑦 → ((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾) ↔ 𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)))
118, 10imbi12d 347 . . . . . . . 8 (𝑗 = 𝑦 → (((𝜑𝑗 ∈ (0...(𝑁 − 1))) → (𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) ↔ ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾))))
12 poimir.0 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
1312nncnd 11654 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
14 npcan1 11065 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
1513, 14syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
1612nnzd 12087 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
17 peano2zm 12026 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
1816, 17syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑁 − 1) ∈ ℤ)
19 uzid 12259 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
20 peano2uz 12302 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
2118, 19, 203syl 18 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
2215, 21eqeltrrd 2914 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘(𝑁 − 1)))
23 fzss2 12948 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
2422, 23syl 17 . . . . . . . . . 10 (𝜑 → (0...(𝑁 − 1)) ⊆ (0...𝑁))
2524sselda 3967 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ (0...𝑁))
26 elun 4125 . . . . . . . . . . . . 13 (𝑦 ∈ ({1} ∪ {0}) ↔ (𝑦 ∈ {1} ∨ 𝑦 ∈ {0}))
27 fzofzp1 13135 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^𝐾) → (𝑥 + 1) ∈ (0...𝐾))
28 elsni 4584 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {1} → 𝑦 = 1)
2928oveq2d 7172 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {1} → (𝑥 + 𝑦) = (𝑥 + 1))
3029eleq1d 2897 . . . . . . . . . . . . . . 15 (𝑦 ∈ {1} → ((𝑥 + 𝑦) ∈ (0...𝐾) ↔ (𝑥 + 1) ∈ (0...𝐾)))
3127, 30syl5ibrcom 249 . . . . . . . . . . . . . 14 (𝑥 ∈ (0..^𝐾) → (𝑦 ∈ {1} → (𝑥 + 𝑦) ∈ (0...𝐾)))
32 elfzoelz 13039 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (0..^𝐾) → 𝑥 ∈ ℤ)
3332zcnd 12089 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (0..^𝐾) → 𝑥 ∈ ℂ)
3433addid1d 10840 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0..^𝐾) → (𝑥 + 0) = 𝑥)
35 elfzofz 13054 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0..^𝐾) → 𝑥 ∈ (0...𝐾))
3634, 35eqeltrd 2913 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^𝐾) → (𝑥 + 0) ∈ (0...𝐾))
37 elsni 4584 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {0} → 𝑦 = 0)
3837oveq2d 7172 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {0} → (𝑥 + 𝑦) = (𝑥 + 0))
3938eleq1d 2897 . . . . . . . . . . . . . . 15 (𝑦 ∈ {0} → ((𝑥 + 𝑦) ∈ (0...𝐾) ↔ (𝑥 + 0) ∈ (0...𝐾)))
4036, 39syl5ibrcom 249 . . . . . . . . . . . . . 14 (𝑥 ∈ (0..^𝐾) → (𝑦 ∈ {0} → (𝑥 + 𝑦) ∈ (0...𝐾)))
4131, 40jaod 855 . . . . . . . . . . . . 13 (𝑥 ∈ (0..^𝐾) → ((𝑦 ∈ {1} ∨ 𝑦 ∈ {0}) → (𝑥 + 𝑦) ∈ (0...𝐾)))
4226, 41syl5bi 244 . . . . . . . . . . . 12 (𝑥 ∈ (0..^𝐾) → (𝑦 ∈ ({1} ∪ {0}) → (𝑥 + 𝑦) ∈ (0...𝐾)))
4342imp 409 . . . . . . . . . . 11 ((𝑥 ∈ (0..^𝐾) ∧ 𝑦 ∈ ({1} ∪ {0})) → (𝑥 + 𝑦) ∈ (0...𝐾))
4443adantl 484 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ (0..^𝐾) ∧ 𝑦 ∈ ({1} ∪ {0}))) → (𝑥 + 𝑦) ∈ (0...𝐾))
45 poimirlem25.3 . . . . . . . . . . 11 (𝜑𝑇:(1...𝑁)⟶(0..^𝐾))
4645adantr 483 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑇:(1...𝑁)⟶(0..^𝐾))
47 1ex 10637 . . . . . . . . . . . . . 14 1 ∈ V
4847fconst 6565 . . . . . . . . . . . . 13 ((𝑈 “ (1...𝑗)) × {1}):(𝑈 “ (1...𝑗))⟶{1}
49 c0ex 10635 . . . . . . . . . . . . . 14 0 ∈ V
5049fconst 6565 . . . . . . . . . . . . 13 ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}):(𝑈 “ ((𝑗 + 1)...𝑁))⟶{0}
5148, 50pm3.2i 473 . . . . . . . . . . . 12 (((𝑈 “ (1...𝑗)) × {1}):(𝑈 “ (1...𝑗))⟶{1} ∧ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}):(𝑈 “ ((𝑗 + 1)...𝑁))⟶{0})
52 poimirlem25.4 . . . . . . . . . . . . . 14 (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))
53 dff1o3 6621 . . . . . . . . . . . . . . 15 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (𝑈:(1...𝑁)–onto→(1...𝑁) ∧ Fun 𝑈))
5453simprbi 499 . . . . . . . . . . . . . 14 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → Fun 𝑈)
55 imain 6439 . . . . . . . . . . . . . 14 (Fun 𝑈 → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))))
5652, 54, 553syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))))
57 elfznn0 13001 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℕ0)
5857nn0red 11957 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℝ)
5958ltp1d 11570 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑁) → 𝑗 < (𝑗 + 1))
60 fzdisj 12935 . . . . . . . . . . . . . . . 16 (𝑗 < (𝑗 + 1) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅)
6159, 60syl 17 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑁) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅)
6261imaeq2d 5929 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑁) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = (𝑈 “ ∅))
63 ima0 5945 . . . . . . . . . . . . . 14 (𝑈 “ ∅) = ∅
6462, 63syl6eq 2872 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑁) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ∅)
6556, 64sylan9req 2877 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅)
66 fun 6540 . . . . . . . . . . . 12 (((((𝑈 “ (1...𝑗)) × {1}):(𝑈 “ (1...𝑗))⟶{1} ∧ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}):(𝑈 “ ((𝑗 + 1)...𝑁))⟶{0}) ∧ ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0}))
6751, 65, 66sylancr 589 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0}))
68 nn0p1nn 11937 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ)
6957, 68syl 17 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈ ℕ)
70 nnuz 12282 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
7169, 70eleqtrdi 2923 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈ (ℤ‘1))
72 elfzuz3 12906 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝑗))
73 fzsplit2 12933 . . . . . . . . . . . . . . . 16 (((𝑗 + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ𝑗)) → (1...𝑁) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑁)))
7471, 72, 73syl2anc 586 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑁) → (1...𝑁) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑁)))
7574imaeq2d 5929 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑁) → (𝑈 “ (1...𝑁)) = (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))))
76 imaundi 6008 . . . . . . . . . . . . . 14 (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) = ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))
7775, 76syl6req 2873 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑁) → ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁))) = (𝑈 “ (1...𝑁)))
78 f1ofo 6622 . . . . . . . . . . . . . 14 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)–onto→(1...𝑁))
79 foima 6595 . . . . . . . . . . . . . 14 (𝑈:(1...𝑁)–onto→(1...𝑁) → (𝑈 “ (1...𝑁)) = (1...𝑁))
8052, 78, 793syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝑈 “ (1...𝑁)) = (1...𝑁))
8177, 80sylan9eqr 2878 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁))) = (1...𝑁))
8281feq2d 6500 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0}) ↔ (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0})))
8367, 82mpbid 234 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0}))
84 ovex 7189 . . . . . . . . . . 11 (1...𝑁) ∈ V
8584a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → (1...𝑁) ∈ V)
86 inidm 4195 . . . . . . . . . 10 ((1...𝑁) ∩ (1...𝑁)) = (1...𝑁)
8744, 46, 83, 85, 85, 86off 7424 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾))
8825, 87syldan 593 . . . . . . . 8 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → (𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾))
896, 11, 88chvarfv 2242 . . . . . . 7 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾))
90 fzp1elp1 12961 . . . . . . . . 9 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ (0...((𝑁 − 1) + 1)))
9115oveq2d 7172 . . . . . . . . . . 11 (𝜑 → (0...((𝑁 − 1) + 1)) = (0...𝑁))
9291eleq2d 2898 . . . . . . . . . 10 (𝜑 → ((𝑦 + 1) ∈ (0...((𝑁 − 1) + 1)) ↔ (𝑦 + 1) ∈ (0...𝑁)))
9392biimpa 479 . . . . . . . . 9 ((𝜑 ∧ (𝑦 + 1) ∈ (0...((𝑁 − 1) + 1))) → (𝑦 + 1) ∈ (0...𝑁))
9490, 93sylan2 594 . . . . . . . 8 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 + 1) ∈ (0...𝑁))
95 nfv 1915 . . . . . . . . . 10 𝑗(𝜑 ∧ (𝑦 + 1) ∈ (0...𝑁))
96 nfcsb1v 3907 . . . . . . . . . . 11 𝑗(𝑦 + 1) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))
9796, 3, 4nff 6510 . . . . . . . . . 10 𝑗(𝑦 + 1) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)
9895, 97nfim 1897 . . . . . . . . 9 𝑗((𝜑 ∧ (𝑦 + 1) ∈ (0...𝑁)) → (𝑦 + 1) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾))
99 ovex 7189 . . . . . . . . 9 (𝑦 + 1) ∈ V
100 eleq1 2900 . . . . . . . . . . 11 (𝑗 = (𝑦 + 1) → (𝑗 ∈ (0...𝑁) ↔ (𝑦 + 1) ∈ (0...𝑁)))
101100anbi2d 630 . . . . . . . . . 10 (𝑗 = (𝑦 + 1) → ((𝜑𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ (𝑦 + 1) ∈ (0...𝑁))))
102 csbeq1a 3897 . . . . . . . . . . 11 (𝑗 = (𝑦 + 1) → (𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑦 + 1) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
103102feq1d 6499 . . . . . . . . . 10 (𝑗 = (𝑦 + 1) → ((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾) ↔ (𝑦 + 1) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)))
104101, 103imbi12d 347 . . . . . . . . 9 (𝑗 = (𝑦 + 1) → (((𝜑𝑗 ∈ (0...𝑁)) → (𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) ↔ ((𝜑 ∧ (𝑦 + 1) ∈ (0...𝑁)) → (𝑦 + 1) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾))))
10598, 99, 104, 87vtoclf 3558 . . . . . . . 8 ((𝜑 ∧ (𝑦 + 1) ∈ (0...𝑁)) → (𝑦 + 1) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾))
10694, 105syldan 593 . . . . . . 7 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 + 1) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾))
107 csbeq1 3886 . . . . . . . . 9 (𝑦 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) → 𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
108107feq1d 6499 . . . . . . . 8 (𝑦 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) → (𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾) ↔ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)))
109 csbeq1 3886 . . . . . . . . 9 ((𝑦 + 1) = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) → (𝑦 + 1) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
110109feq1d 6499 . . . . . . . 8 ((𝑦 + 1) = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) → ((𝑦 + 1) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾) ↔ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)))
111108, 110ifboth 4505 . . . . . . 7 ((𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾) ∧ (𝑦 + 1) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾))
11289, 106, 111syl2anc 586 . . . . . 6 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾))
113 ovex 7189 . . . . . . 7 (0...𝐾) ∈ V
114113, 84elmap 8435 . . . . . 6 (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ ((0...𝐾) ↑m (1...𝑁)) ↔ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾))
115112, 114sylibr 236 . . . . 5 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ ((0...𝐾) ↑m (1...𝑁)))
116115fmpttd 6879 . . . 4 (𝜑 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))):(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
117 ovex 7189 . . . . 5 ((0...𝐾) ↑m (1...𝑁)) ∈ V
118 ovex 7189 . . . . 5 (0...(𝑁 − 1)) ∈ V
119117, 118elmap 8435 . . . 4 ((𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ∈ (((0...𝐾) ↑m (1...𝑁)) ↑m (0...(𝑁 − 1))) ↔ (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))):(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
120116, 119sylibr 236 . . 3 (𝜑 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ∈ (((0...𝐾) ↑m (1...𝑁)) ↑m (0...(𝑁 − 1))))
121 rneq 5806 . . . . . . . 8 (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) → ran 𝑥 = ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))))
122121mpteq1d 5155 . . . . . . 7 (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) → (𝑝 ∈ ran 𝑥𝐵) = (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵))
123122rneqd 5808 . . . . . 6 (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) → ran (𝑝 ∈ ran 𝑥𝐵) = ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵))
124123sseq2d 3999 . . . . 5 (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) → ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥𝐵) ↔ (0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵)))
125121rexeqdv 3416 . . . . 5 (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) → (∃𝑝 ∈ ran 𝑥(𝑝𝑁) ≠ 0 ↔ ∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0))
126124, 125anbi12d 632 . . . 4 (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) → (((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝𝑁) ≠ 0) ↔ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ∧ ∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0)))
127126ceqsrexv 3649 . . 3 ((𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ∈ (((0...𝐾) ↑m (1...𝑁)) ↑m (0...(𝑁 − 1))) → (∃𝑥 ∈ (((0...𝐾) ↑m (1...𝑁)) ↑m (0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝𝑁) ≠ 0)) ↔ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ∧ ∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0)))
128120, 127syl 17 . 2 (𝜑 → (∃𝑥 ∈ (((0...𝐾) ↑m (1...𝑁)) ↑m (0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝𝑁) ≠ 0)) ↔ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ∧ ∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0)))
129 dfss3 3956 . . . 4 ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ↔ ∀𝑖 ∈ (0...(𝑁 − 1))𝑖 ∈ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵))
130 ovex 7189 . . . . . . . . . . . . 13 ((1st𝑠) ∘f + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V
131 poimirlem28.1 . . . . . . . . . . . . 13 (𝑝 = ((1st𝑠) ∘f + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶)
132130, 131csbie 3918 . . . . . . . . . . . 12 ((1st𝑠) ∘f + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵 = 𝐶
133132csbeq2i 3891 . . . . . . . . . . 11 𝑇, 𝑈⟩ / 𝑠((1st𝑠) ∘f + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵 = 𝑇, 𝑈⟩ / 𝑠𝐶
134 opex 5356 . . . . . . . . . . . . 13 𝑇, 𝑈⟩ ∈ V
135134a1i 11 . . . . . . . . . . . 12 (𝜑 → ⟨𝑇, 𝑈⟩ ∈ V)
136 fveq2 6670 . . . . . . . . . . . . . . 15 (𝑠 = ⟨𝑇, 𝑈⟩ → (1st𝑠) = (1st ‘⟨𝑇, 𝑈⟩))
137 fex 6989 . . . . . . . . . . . . . . . . 17 ((𝑇:(1...𝑁)⟶(0..^𝐾) ∧ (1...𝑁) ∈ V) → 𝑇 ∈ V)
13845, 84, 137sylancl 588 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ∈ V)
139 f1oexrnex 7632 . . . . . . . . . . . . . . . . 17 ((𝑈:(1...𝑁)–1-1-onto→(1...𝑁) ∧ (1...𝑁) ∈ V) → 𝑈 ∈ V)
14052, 84, 139sylancl 588 . . . . . . . . . . . . . . . 16 (𝜑𝑈 ∈ V)
141 op1stg 7701 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ V ∧ 𝑈 ∈ V) → (1st ‘⟨𝑇, 𝑈⟩) = 𝑇)
142138, 140, 141syl2anc 586 . . . . . . . . . . . . . . 15 (𝜑 → (1st ‘⟨𝑇, 𝑈⟩) = 𝑇)
143136, 142sylan9eqr 2878 . . . . . . . . . . . . . 14 ((𝜑𝑠 = ⟨𝑇, 𝑈⟩) → (1st𝑠) = 𝑇)
144 fveq2 6670 . . . . . . . . . . . . . . . 16 (𝑠 = ⟨𝑇, 𝑈⟩ → (2nd𝑠) = (2nd ‘⟨𝑇, 𝑈⟩))
145 op2ndg 7702 . . . . . . . . . . . . . . . . 17 ((𝑇 ∈ V ∧ 𝑈 ∈ V) → (2nd ‘⟨𝑇, 𝑈⟩) = 𝑈)
146138, 140, 145syl2anc 586 . . . . . . . . . . . . . . . 16 (𝜑 → (2nd ‘⟨𝑇, 𝑈⟩) = 𝑈)
147144, 146sylan9eqr 2878 . . . . . . . . . . . . . . 15 ((𝜑𝑠 = ⟨𝑇, 𝑈⟩) → (2nd𝑠) = 𝑈)
148 imaeq1 5924 . . . . . . . . . . . . . . . . 17 ((2nd𝑠) = 𝑈 → ((2nd𝑠) “ (1...𝑗)) = (𝑈 “ (1...𝑗)))
149148xpeq1d 5584 . . . . . . . . . . . . . . . 16 ((2nd𝑠) = 𝑈 → (((2nd𝑠) “ (1...𝑗)) × {1}) = ((𝑈 “ (1...𝑗)) × {1}))
150 imaeq1 5924 . . . . . . . . . . . . . . . . 17 ((2nd𝑠) = 𝑈 → ((2nd𝑠) “ ((𝑗 + 1)...𝑁)) = (𝑈 “ ((𝑗 + 1)...𝑁)))
151150xpeq1d 5584 . . . . . . . . . . . . . . . 16 ((2nd𝑠) = 𝑈 → (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))
152149, 151uneq12d 4140 . . . . . . . . . . . . . . 15 ((2nd𝑠) = 𝑈 → ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))
153147, 152syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑠 = ⟨𝑇, 𝑈⟩) → ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))
154143, 153oveq12d 7174 . . . . . . . . . . . . 13 ((𝜑𝑠 = ⟨𝑇, 𝑈⟩) → ((1st𝑠) ∘f + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
155154csbeq1d 3887 . . . . . . . . . . . 12 ((𝜑𝑠 = ⟨𝑇, 𝑈⟩) → ((1st𝑠) ∘f + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵 = (𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵)
156135, 155csbied 3919 . . . . . . . . . . 11 (𝜑𝑇, 𝑈⟩ / 𝑠((1st𝑠) ∘f + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵 = (𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵)
157133, 156syl5eqr 2870 . . . . . . . . . 10 (𝜑𝑇, 𝑈⟩ / 𝑠𝐶 = (𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵)
158157csbeq2dv 3890 . . . . . . . . 9 (𝜑if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵)
159158eqeq2d 2832 . . . . . . . 8 (𝜑 → (𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵))
160159rexbidv 3297 . . . . . . 7 (𝜑 → (∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶 ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵))
161 vex 3497 . . . . . . . . 9 𝑖 ∈ V
162 eqid 2821 . . . . . . . . . 10 (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) = (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵)
163162elrnmpt 5828 . . . . . . . . 9 (𝑖 ∈ V → (𝑖 ∈ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ↔ ∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))𝑖 = 𝐵))
164161, 163ax-mp 5 . . . . . . . 8 (𝑖 ∈ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ↔ ∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))𝑖 = 𝐵)
165 nfv 1915 . . . . . . . . 9 𝑘 𝑖 = 𝐵
166 nfcsb1v 3907 . . . . . . . . . 10 𝑝𝑘 / 𝑝𝐵
167166nfeq2 2995 . . . . . . . . 9 𝑝 𝑖 = 𝑘 / 𝑝𝐵
168 csbeq1a 3897 . . . . . . . . . 10 (𝑝 = 𝑘𝐵 = 𝑘 / 𝑝𝐵)
169168eqeq2d 2832 . . . . . . . . 9 (𝑝 = 𝑘 → (𝑖 = 𝐵𝑖 = 𝑘 / 𝑝𝐵))
170165, 167, 169cbvrexw 3442 . . . . . . . 8 (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))𝑖 = 𝐵 ↔ ∃𝑘 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))𝑖 = 𝑘 / 𝑝𝐵)
171 ovex 7189 . . . . . . . . . . 11 (𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V
172171csbex 5215 . . . . . . . . . 10 if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V
173172rgenw 3150 . . . . . . . . 9 𝑦 ∈ (0...(𝑁 − 1))if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V
174 eqid 2821 . . . . . . . . . 10 (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
175 csbeq1 3886 . . . . . . . . . . . 12 (𝑘 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝑘 / 𝑝𝐵 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵)
176 vex 3497 . . . . . . . . . . . . . 14 𝑦 ∈ V
177176, 99ifex 4515 . . . . . . . . . . . . 13 if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) ∈ V
178 csbnestgw 4373 . . . . . . . . . . . . 13 (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) ∈ V → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵)
179177, 178ax-mp 5 . . . . . . . . . . . 12 if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵
180175, 179syl6eqr 2874 . . . . . . . . . . 11 (𝑘 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝑘 / 𝑝𝐵 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵)
181180eqeq2d 2832 . . . . . . . . . 10 (𝑘 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) → (𝑖 = 𝑘 / 𝑝𝐵𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵))
182174, 181rexrnmptw 6861 . . . . . . . . 9 (∀𝑦 ∈ (0...(𝑁 − 1))if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V → (∃𝑘 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))𝑖 = 𝑘 / 𝑝𝐵 ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵))
183173, 182ax-mp 5 . . . . . . . 8 (∃𝑘 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))𝑖 = 𝑘 / 𝑝𝐵 ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵)
184164, 170, 1833bitri 299 . . . . . . 7 (𝑖 ∈ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝𝐵)
185160, 184syl6bbr 291 . . . . . 6 (𝜑 → (∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶𝑖 ∈ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵)))
18624sselda 3967 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ (0...𝑁))
187186adantr 483 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < 𝑉) → 𝑦 ∈ (0...𝑁))
188 elfzelz 12909 . . . . . . . . . . . . . 14 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℤ)
189188zred 12088 . . . . . . . . . . . . 13 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ)
190189adantl 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ ℝ)
191 ltne 10737 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑦 < 𝑉) → 𝑉𝑦)
192191necomd 3071 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑦 < 𝑉) → 𝑦𝑉)
193190, 192sylan 582 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < 𝑉) → 𝑦𝑉)
194 eldifsn 4719 . . . . . . . . . . 11 (𝑦 ∈ ((0...𝑁) ∖ {𝑉}) ↔ (𝑦 ∈ (0...𝑁) ∧ 𝑦𝑉))
195187, 193, 194sylanbrc 585 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < 𝑉) → 𝑦 ∈ ((0...𝑁) ∖ {𝑉}))
19694adantr 483 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < 𝑉) → (𝑦 + 1) ∈ (0...𝑁))
197 poimirlem24.5 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (0...𝑁))
198 elfzelz 12909 . . . . . . . . . . . . . . 15 (𝑉 ∈ (0...𝑁) → 𝑉 ∈ ℤ)
199197, 198syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉 ∈ ℤ)
200199zred 12088 . . . . . . . . . . . . 13 (𝜑𝑉 ∈ ℝ)
201200ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < 𝑉) → 𝑉 ∈ ℝ)
202 zre 11986 . . . . . . . . . . . . . . . 16 (𝑉 ∈ ℤ → 𝑉 ∈ ℝ)
203 zre 11986 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
204 lenlt 10719 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑉𝑦 ↔ ¬ 𝑦 < 𝑉))
205202, 203, 204syl2an 597 . . . . . . . . . . . . . . 15 ((𝑉 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑉𝑦 ↔ ¬ 𝑦 < 𝑉))
206 zleltp1 12034 . . . . . . . . . . . . . . 15 ((𝑉 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑉𝑦𝑉 < (𝑦 + 1)))
207205, 206bitr3d 283 . . . . . . . . . . . . . 14 ((𝑉 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (¬ 𝑦 < 𝑉𝑉 < (𝑦 + 1)))
208199, 188, 207syl2an 597 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (¬ 𝑦 < 𝑉𝑉 < (𝑦 + 1)))
209208biimpa 479 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < 𝑉) → 𝑉 < (𝑦 + 1))
210201, 209gtned 10775 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < 𝑉) → (𝑦 + 1) ≠ 𝑉)
211 eldifsn 4719 . . . . . . . . . . 11 ((𝑦 + 1) ∈ ((0...𝑁) ∖ {𝑉}) ↔ ((𝑦 + 1) ∈ (0...𝑁) ∧ (𝑦 + 1) ≠ 𝑉))
212196, 210, 211sylanbrc 585 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < 𝑉) → (𝑦 + 1) ∈ ((0...𝑁) ∖ {𝑉}))
213195, 212ifclda 4501 . . . . . . . . 9 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) ∈ ((0...𝑁) ∖ {𝑉}))
214 nfcsb1v 3907 . . . . . . . . . . . 12 𝑗if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶
215214nfeq2 2995 . . . . . . . . . . 11 𝑗 𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶
216 csbeq1a 3897 . . . . . . . . . . . 12 (𝑗 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) → 𝑇, 𝑈⟩ / 𝑠𝐶 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶)
217216eqeq2d 2832 . . . . . . . . . . 11 (𝑗 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) → (𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶))
218215, 217rspce 3612 . . . . . . . . . 10 ((if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) ∈ ((0...𝑁) ∖ {𝑉}) ∧ 𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶) → ∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶)
219218ex 415 . . . . . . . . 9 (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) ∈ ((0...𝑁) ∖ {𝑉}) → (𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶 → ∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶))
220213, 219syl 17 . . . . . . . 8 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶 → ∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶))
221220rexlimdva 3284 . . . . . . 7 (𝜑 → (∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶 → ∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶))
222 nfv 1915 . . . . . . . 8 𝑗𝜑
223 nfcv 2977 . . . . . . . . 9 𝑗(0...(𝑁 − 1))
224223, 215nfrex 3309 . . . . . . . 8 𝑗𝑦 ∈ (0...(𝑁 − 1))𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶
225 eldifi 4103 . . . . . . . . . . . . . . 15 (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → 𝑗 ∈ (0...𝑁))
226225, 57syl 17 . . . . . . . . . . . . . 14 (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → 𝑗 ∈ ℕ0)
227226nn0ge0d 11959 . . . . . . . . . . . . 13 (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → 0 ≤ 𝑗)
228227ad2antlr 725 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 0 ≤ 𝑗)
229226nn0red 11957 . . . . . . . . . . . . . . 15 (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → 𝑗 ∈ ℝ)
230229ad2antlr 725 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 𝑗 ∈ ℝ)
231200ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 𝑉 ∈ ℝ)
23216zred 12088 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ)
233232ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 𝑁 ∈ ℝ)
234 simpr 487 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 𝑗 < 𝑉)
235 elfzle2 12912 . . . . . . . . . . . . . . . 16 (𝑉 ∈ (0...𝑁) → 𝑉𝑁)
236197, 235syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑉𝑁)
237236ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 𝑉𝑁)
238230, 231, 233, 234, 237ltletrd 10800 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 𝑗 < 𝑁)
239226nn0zd 12086 . . . . . . . . . . . . . . 15 (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → 𝑗 ∈ ℤ)
240 zltlem1 12036 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 < 𝑁𝑗 ≤ (𝑁 − 1)))
241239, 16, 240syl2anr 598 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑗 < 𝑁𝑗 ≤ (𝑁 − 1)))
242241adantr 483 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → (𝑗 < 𝑁𝑗 ≤ (𝑁 − 1)))
243238, 242mpbid 234 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 𝑗 ≤ (𝑁 − 1))
244 0z 11993 . . . . . . . . . . . . . . 15 0 ∈ ℤ
245 elfz 12899 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑗 ∈ (0...(𝑁 − 1)) ↔ (0 ≤ 𝑗𝑗 ≤ (𝑁 − 1))))
246244, 245mp3an2 1445 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑗 ∈ (0...(𝑁 − 1)) ↔ (0 ≤ 𝑗𝑗 ≤ (𝑁 − 1))))
247239, 18, 246syl2anr 598 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑗 ∈ (0...(𝑁 − 1)) ↔ (0 ≤ 𝑗𝑗 ≤ (𝑁 − 1))))
248247adantr 483 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → (𝑗 ∈ (0...(𝑁 − 1)) ↔ (0 ≤ 𝑗𝑗 ≤ (𝑁 − 1))))
249228, 243, 248mpbir2and 711 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 𝑗 ∈ (0...(𝑁 − 1)))
250 0red 10644 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 0 ∈ ℝ)
251200ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 𝑉 ∈ ℝ)
252229ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 𝑗 ∈ ℝ)
253 elfzle1 12911 . . . . . . . . . . . . . . . . 17 (𝑉 ∈ (0...𝑁) → 0 ≤ 𝑉)
254197, 253syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 𝑉)
255254ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 0 ≤ 𝑉)
256 lenlt 10719 . . . . . . . . . . . . . . . . . 18 ((𝑉 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑉𝑗 ↔ ¬ 𝑗 < 𝑉))
257200, 229, 256syl2an 597 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑉𝑗 ↔ ¬ 𝑗 < 𝑉))
258257biimpar 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 𝑉𝑗)
259 eldifsni 4722 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → 𝑗𝑉)
260259ad2antlr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 𝑗𝑉)
261 ltlen 10741 . . . . . . . . . . . . . . . . . 18 ((𝑉 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑉 < 𝑗 ↔ (𝑉𝑗𝑗𝑉)))
262200, 229, 261syl2an 597 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑉 < 𝑗 ↔ (𝑉𝑗𝑗𝑉)))
263262adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → (𝑉 < 𝑗 ↔ (𝑉𝑗𝑗𝑉)))
264258, 260, 263mpbir2and 711 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 𝑉 < 𝑗)
265250, 251, 252, 255, 264lelttrd 10798 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 0 < 𝑗)
266 zgt0ge1 12037 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℤ → (0 < 𝑗 ↔ 1 ≤ 𝑗))
267239, 266syl 17 . . . . . . . . . . . . . . 15 (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → (0 < 𝑗 ↔ 1 ≤ 𝑗))
268267ad2antlr 725 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → (0 < 𝑗 ↔ 1 ≤ 𝑗))
269265, 268mpbid 234 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 1 ≤ 𝑗)
270 elfzle2 12912 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑁) → 𝑗𝑁)
271225, 270syl 17 . . . . . . . . . . . . . 14 (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → 𝑗𝑁)
272271ad2antlr 725 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 𝑗𝑁)
273 1z 12013 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
274 elfz 12899 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (1...𝑁) ↔ (1 ≤ 𝑗𝑗𝑁)))
275273, 274mp3an2 1445 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (1...𝑁) ↔ (1 ≤ 𝑗𝑗𝑁)))
276239, 16, 275syl2anr 598 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑗 ∈ (1...𝑁) ↔ (1 ≤ 𝑗𝑗𝑁)))
277276adantr 483 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → (𝑗 ∈ (1...𝑁) ↔ (1 ≤ 𝑗𝑗𝑁)))
278269, 272, 277mpbir2and 711 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 𝑗 ∈ (1...𝑁))
279 elfzmlbm 13018 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑁) → (𝑗 − 1) ∈ (0...(𝑁 − 1)))
280278, 279syl 17 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → (𝑗 − 1) ∈ (0...(𝑁 − 1)))
281249, 280ifclda 4501 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) ∈ (0...(𝑁 − 1)))
282 breq1 5069 . . . . . . . . . . . . . . . 16 (𝑗 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → (𝑗 < 𝑉 ↔ if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉))
283 id 22 . . . . . . . . . . . . . . . 16 (𝑗 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → 𝑗 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)))
284 oveq1 7163 . . . . . . . . . . . . . . . 16 (𝑗 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → (𝑗 + 1) = (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1))
285282, 283, 284ifbieq12d 4494 . . . . . . . . . . . . . . 15 (𝑗 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → if(𝑗 < 𝑉, 𝑗, (𝑗 + 1)) = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)))
286285eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑗 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → (𝑗 = if(𝑗 < 𝑉, 𝑗, (𝑗 + 1)) ↔ 𝑗 = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1))))
287 breq1 5069 . . . . . . . . . . . . . . . 16 ((𝑗 − 1) = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → ((𝑗 − 1) < 𝑉 ↔ if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉))
288 id 22 . . . . . . . . . . . . . . . 16 ((𝑗 − 1) = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → (𝑗 − 1) = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)))
289 oveq1 7163 . . . . . . . . . . . . . . . 16 ((𝑗 − 1) = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → ((𝑗 − 1) + 1) = (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1))
290287, 288, 289ifbieq12d 4494 . . . . . . . . . . . . . . 15 ((𝑗 − 1) = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → if((𝑗 − 1) < 𝑉, (𝑗 − 1), ((𝑗 − 1) + 1)) = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)))
291290eqeq2d 2832 . . . . . . . . . . . . . 14 ((𝑗 − 1) = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → (𝑗 = if((𝑗 − 1) < 𝑉, (𝑗 − 1), ((𝑗 − 1) + 1)) ↔ 𝑗 = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1))))
292 iftrue 4473 . . . . . . . . . . . . . . . 16 (𝑗 < 𝑉 → if(𝑗 < 𝑉, 𝑗, (𝑗 + 1)) = 𝑗)
293292eqcomd 2827 . . . . . . . . . . . . . . 15 (𝑗 < 𝑉𝑗 = if(𝑗 < 𝑉, 𝑗, (𝑗 + 1)))
294293adantl 484 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 𝑗 = if(𝑗 < 𝑉, 𝑗, (𝑗 + 1)))
295 zlem1lt 12035 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℤ ∧ 𝑉 ∈ ℤ) → (𝑗𝑉 ↔ (𝑗 − 1) < 𝑉))
296239, 199, 295syl2anr 598 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑗𝑉 ↔ (𝑗 − 1) < 𝑉))
297259necomd 3071 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → 𝑉𝑗)
298297adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → 𝑉𝑗)
299 ltlen 10741 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℝ ∧ 𝑉 ∈ ℝ) → (𝑗 < 𝑉 ↔ (𝑗𝑉𝑉𝑗)))
300229, 200, 299syl2anr 598 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑗 < 𝑉 ↔ (𝑗𝑉𝑉𝑗)))
301300biimprd 250 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → ((𝑗𝑉𝑉𝑗) → 𝑗 < 𝑉))
302298, 301mpan2d 692 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑗𝑉𝑗 < 𝑉))
303296, 302sylbird 262 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → ((𝑗 − 1) < 𝑉𝑗 < 𝑉))
304303con3dimp 411 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → ¬ (𝑗 − 1) < 𝑉)
305304iffalsed 4478 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → if((𝑗 − 1) < 𝑉, (𝑗 − 1), ((𝑗 − 1) + 1)) = ((𝑗 − 1) + 1))
306226nn0cnd 11958 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → 𝑗 ∈ ℂ)
307 npcan1 11065 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℂ → ((𝑗 − 1) + 1) = 𝑗)
308306, 307syl 17 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → ((𝑗 − 1) + 1) = 𝑗)
309308ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → ((𝑗 − 1) + 1) = 𝑗)
310305, 309eqtr2d 2857 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 𝑗 = if((𝑗 − 1) < 𝑉, (𝑗 − 1), ((𝑗 − 1) + 1)))
311286, 291, 294, 310ifbothda 4504 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → 𝑗 = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)))
312 csbeq1a 3897 . . . . . . . . . . . . 13 (𝑗 = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) → 𝑇, 𝑈⟩ / 𝑠𝐶 = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶)
313311, 312syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → 𝑇, 𝑈⟩ / 𝑠𝐶 = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶)
314313eqeq2d 2832 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶𝑖 = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶))
315314biimpd 231 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶𝑖 = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶))
316 breq1 5069 . . . . . . . . . . . . . 14 (𝑦 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → (𝑦 < 𝑉 ↔ if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉))
317 id 22 . . . . . . . . . . . . . 14 (𝑦 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → 𝑦 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)))
318 oveq1 7163 . . . . . . . . . . . . . 14 (𝑦 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → (𝑦 + 1) = (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1))
319316, 317, 318ifbieq12d 4494 . . . . . . . . . . . . 13 (𝑦 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)))
320319csbeq1d 3887 . . . . . . . . . . . 12 (𝑦 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶 = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶)
321320eqeq2d 2832 . . . . . . . . . . 11 (𝑦 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → (𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶𝑖 = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶))
322321rspcev 3623 . . . . . . . . . 10 ((if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) ∈ (0...(𝑁 − 1)) ∧ 𝑖 = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶) → ∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶)
323281, 315, 322syl6an 682 . . . . . . . . 9 ((𝜑𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶 → ∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶))
324323ex 415 . . . . . . . 8 (𝜑 → (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → (𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶 → ∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶)))
325222, 224, 324rexlimd 3317 . . . . . . 7 (𝜑 → (∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶 → ∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶))
326221, 325impbid 214 . . . . . 6 (𝜑 → (∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗𝑇, 𝑈⟩ / 𝑠𝐶 ↔ ∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶))
327185, 326bitr3d 283 . . . . 5 (𝜑 → (𝑖 ∈ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ↔ ∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶))
328327ralbidv 3197 . . . 4 (𝜑 → (∀𝑖 ∈ (0...(𝑁 − 1))𝑖 ∈ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶))
329129, 328syl5bb 285 . . 3 (𝜑 → ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶))
330329anbi1d 631 . 2 (𝜑 → (((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ∧ ∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶 ∧ ∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0)))
33112, 45, 52, 197poimirlem23 34930 . . 3 (𝜑 → (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0 ↔ ¬ (𝑉 = 𝑁 ∧ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁))))
332331anbi2d 630 . 2 (𝜑 → ((∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶 ∧ ∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶 ∧ ¬ (𝑉 = 𝑁 ∧ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁)))))
333128, 330, 3323bitrd 307 1 (𝜑 → (∃𝑥 ∈ (((0...𝐾) ↑m (1...𝑁)) ↑m (0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝𝑁) ≠ 0)) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶 ∧ ¬ (𝑉 = 𝑁 ∧ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  Vcvv 3494  csb 3883  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  ifcif 4467  {csn 4567  cop 4573   class class class wbr 5066  cmpt 5146   × cxp 5553  ccnv 5554  ran crn 5556  cima 5558  Fun wfun 6349  wf 6351  ontowfo 6353  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  f cof 7407  1st c1st 7687  2nd c2nd 7688  m cmap 8406  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   < clt 10675  cle 10676  cmin 10870  cn 11638  0cn0 11898  cz 11982  cuz 12244  ...cfz 12893  ..^cfzo 13034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035
This theorem is referenced by:  poimirlem27  34934
  Copyright terms: Public domain W3C validator