MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumdixp Structured version   Visualization version   GIF version

Theorem gsumdixp 18655
Description: Distribute a binary product of sums to a sum of binary products in a ring. (Contributed by Mario Carneiro, 8-Mar-2015.) (Revised by AV, 10-Jul-2019.)
Hypotheses
Ref Expression
gsumdixp.b 𝐵 = (Base‘𝑅)
gsumdixp.t · = (.r𝑅)
gsumdixp.z 0 = (0g𝑅)
gsumdixp.i (𝜑𝐼𝑉)
gsumdixp.j (𝜑𝐽𝑊)
gsumdixp.r (𝜑𝑅 ∈ Ring)
gsumdixp.x ((𝜑𝑥𝐼) → 𝑋𝐵)
gsumdixp.y ((𝜑𝑦𝐽) → 𝑌𝐵)
gsumdixp.xf (𝜑 → (𝑥𝐼𝑋) finSupp 0 )
gsumdixp.yf (𝜑 → (𝑦𝐽𝑌) finSupp 0 )
Assertion
Ref Expression
gsumdixp (𝜑 → ((𝑅 Σg (𝑥𝐼𝑋)) · (𝑅 Σg (𝑦𝐽𝑌))) = (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐼,𝑦   𝑥,𝐽,𝑦   𝑥,𝑅   𝑥, · ,𝑦   𝑦,𝑋   𝑥,𝑌
Allowed substitution hints:   𝑅(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥)   𝑌(𝑦)   0 (𝑥,𝑦)

Proof of Theorem gsumdixp
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumdixp.b . . . 4 𝐵 = (Base‘𝑅)
2 gsumdixp.z . . . 4 0 = (0g𝑅)
3 gsumdixp.r . . . . 5 (𝜑𝑅 ∈ Ring)
4 ringcmn 18627 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . . . 4 (𝜑𝑅 ∈ CMnd)
6 gsumdixp.i . . . 4 (𝜑𝐼𝑉)
7 gsumdixp.j . . . . 5 (𝜑𝐽𝑊)
87adantr 480 . . . 4 ((𝜑𝑖𝐼) → 𝐽𝑊)
93adantr 480 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑅 ∈ Ring)
10 gsumdixp.x . . . . . . 7 ((𝜑𝑥𝐼) → 𝑋𝐵)
11 eqid 2651 . . . . . . 7 (𝑥𝐼𝑋) = (𝑥𝐼𝑋)
1210, 11fmptd 6425 . . . . . 6 (𝜑 → (𝑥𝐼𝑋):𝐼𝐵)
13 simpl 472 . . . . . 6 ((𝑖𝐼𝑗𝐽) → 𝑖𝐼)
14 ffvelrn 6397 . . . . . 6 (((𝑥𝐼𝑋):𝐼𝐵𝑖𝐼) → ((𝑥𝐼𝑋)‘𝑖) ∈ 𝐵)
1512, 13, 14syl2an 493 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑥𝐼𝑋)‘𝑖) ∈ 𝐵)
16 gsumdixp.y . . . . . . 7 ((𝜑𝑦𝐽) → 𝑌𝐵)
17 eqid 2651 . . . . . . 7 (𝑦𝐽𝑌) = (𝑦𝐽𝑌)
1816, 17fmptd 6425 . . . . . 6 (𝜑 → (𝑦𝐽𝑌):𝐽𝐵)
19 simpr 476 . . . . . 6 ((𝑖𝐼𝑗𝐽) → 𝑗𝐽)
20 ffvelrn 6397 . . . . . 6 (((𝑦𝐽𝑌):𝐽𝐵𝑗𝐽) → ((𝑦𝐽𝑌)‘𝑗) ∈ 𝐵)
2118, 19, 20syl2an 493 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑦𝐽𝑌)‘𝑗) ∈ 𝐵)
22 gsumdixp.t . . . . . 6 · = (.r𝑅)
231, 22ringcl 18607 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑥𝐼𝑋)‘𝑖) ∈ 𝐵 ∧ ((𝑦𝐽𝑌)‘𝑗) ∈ 𝐵) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) ∈ 𝐵)
249, 15, 21, 23syl3anc 1366 . . . 4 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) ∈ 𝐵)
25 gsumdixp.xf . . . . . 6 (𝜑 → (𝑥𝐼𝑋) finSupp 0 )
2625fsuppimpd 8323 . . . . 5 (𝜑 → ((𝑥𝐼𝑋) supp 0 ) ∈ Fin)
27 gsumdixp.yf . . . . . 6 (𝜑 → (𝑦𝐽𝑌) finSupp 0 )
2827fsuppimpd 8323 . . . . 5 (𝜑 → ((𝑦𝐽𝑌) supp 0 ) ∈ Fin)
29 xpfi 8272 . . . . 5 ((((𝑥𝐼𝑋) supp 0 ) ∈ Fin ∧ ((𝑦𝐽𝑌) supp 0 ) ∈ Fin) → (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )) ∈ Fin)
3026, 28, 29syl2anc 694 . . . 4 (𝜑 → (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )) ∈ Fin)
31 ianor 508 . . . . . . 7 (¬ (𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∧ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) ↔ (¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∨ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
32 brxp 5181 . . . . . . 7 (𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗 ↔ (𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∧ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
3331, 32xchnxbir 322 . . . . . 6 𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗 ↔ (¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∨ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
34 simprl 809 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑖𝐼)
35 eldif 3617 . . . . . . . . . . . 12 (𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) ↔ (𝑖𝐼 ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )))
3635biimpri 218 . . . . . . . . . . 11 ((𝑖𝐼 ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → 𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )))
3734, 36sylan 487 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → 𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )))
3812adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (𝑥𝐼𝑋):𝐼𝐵)
39 ssid 3657 . . . . . . . . . . . 12 ((𝑥𝐼𝑋) supp 0 ) ⊆ ((𝑥𝐼𝑋) supp 0 )
4039a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑥𝐼𝑋) supp 0 ) ⊆ ((𝑥𝐼𝑋) supp 0 ))
416adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝐼𝑉)
42 fvex 6239 . . . . . . . . . . . . 13 (0g𝑅) ∈ V
432, 42eqeltri 2726 . . . . . . . . . . . 12 0 ∈ V
4443a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 0 ∈ V)
4538, 40, 41, 44suppssr 7371 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ 𝑖 ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 ))) → ((𝑥𝐼𝑋)‘𝑖) = 0 )
4637, 45syldan 486 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → ((𝑥𝐼𝑋)‘𝑖) = 0 )
4746oveq1d 6705 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = ( 0 · ((𝑦𝐽𝑌)‘𝑗)))
481, 22, 2ringlz 18633 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑦𝐽𝑌)‘𝑗) ∈ 𝐵) → ( 0 · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
499, 21, 48syl2anc 694 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ( 0 · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
5049adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → ( 0 · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
5147, 50eqtrd 2685 . . . . . . 7 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
52 simprr 811 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑗𝐽)
53 eldif 3617 . . . . . . . . . . . 12 (𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )) ↔ (𝑗𝐽 ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )))
5453biimpri 218 . . . . . . . . . . 11 ((𝑗𝐽 ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → 𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))
5552, 54sylan 487 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → 𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))
5618adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (𝑦𝐽𝑌):𝐽𝐵)
57 ssid 3657 . . . . . . . . . . . 12 ((𝑦𝐽𝑌) supp 0 ) ⊆ ((𝑦𝐽𝑌) supp 0 )
5857a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → ((𝑦𝐽𝑌) supp 0 ) ⊆ ((𝑦𝐽𝑌) supp 0 ))
597adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝐽𝑊)
6056, 58, 59, 44suppssr 7371 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ 𝑗 ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))) → ((𝑦𝐽𝑌)‘𝑗) = 0 )
6155, 60syldan 486 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → ((𝑦𝐽𝑌)‘𝑗) = 0 )
6261oveq2d 6706 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑖) · 0 ))
631, 22, 2ringrz 18634 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑥𝐼𝑋)‘𝑖) ∈ 𝐵) → (((𝑥𝐼𝑋)‘𝑖) · 0 ) = 0 )
649, 15, 63syl2anc 694 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (((𝑥𝐼𝑋)‘𝑖) · 0 ) = 0 )
6564adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · 0 ) = 0 )
6662, 65eqtrd 2685 . . . . . . 7 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 )) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
6751, 66jaodan 843 . . . . . 6 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ (¬ 𝑖 ∈ ((𝑥𝐼𝑋) supp 0 ) ∨ ¬ 𝑗 ∈ ((𝑦𝐽𝑌) supp 0 ))) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
6833, 67sylan2b 491 . . . . 5 (((𝜑 ∧ (𝑖𝐼𝑗𝐽)) ∧ ¬ 𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
6968anasss 680 . . . 4 ((𝜑 ∧ ((𝑖𝐼𝑗𝐽) ∧ ¬ 𝑖(((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))𝑗)) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = 0 )
701, 2, 5, 6, 8, 24, 30, 69gsum2d2 18419 . . 3 (𝜑 → (𝑅 Σg (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))) = (𝑅 Σg (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))))))
71 nffvmpt1 6237 . . . . . . 7 𝑥((𝑥𝐼𝑋)‘𝑖)
72 nfcv 2793 . . . . . . 7 𝑥 ·
73 nfcv 2793 . . . . . . 7 𝑥((𝑦𝐽𝑌)‘𝑗)
7471, 72, 73nfov 6716 . . . . . 6 𝑥(((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))
75 nfcv 2793 . . . . . . 7 𝑦((𝑥𝐼𝑋)‘𝑖)
76 nfcv 2793 . . . . . . 7 𝑦 ·
77 nffvmpt1 6237 . . . . . . 7 𝑦((𝑦𝐽𝑌)‘𝑗)
7875, 76, 77nfov 6716 . . . . . 6 𝑦(((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))
79 nfcv 2793 . . . . . 6 𝑖(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))
80 nfcv 2793 . . . . . 6 𝑗(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))
81 fveq2 6229 . . . . . . 7 (𝑖 = 𝑥 → ((𝑥𝐼𝑋)‘𝑖) = ((𝑥𝐼𝑋)‘𝑥))
82 fveq2 6229 . . . . . . 7 (𝑗 = 𝑦 → ((𝑦𝐽𝑌)‘𝑗) = ((𝑦𝐽𝑌)‘𝑦))
8381, 82oveqan12d 6709 . . . . . 6 ((𝑖 = 𝑥𝑗 = 𝑦) → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
8474, 78, 79, 80, 83cbvmpt2 6776 . . . . 5 (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
85 simp2 1082 . . . . . . . 8 ((𝜑𝑥𝐼𝑦𝐽) → 𝑥𝐼)
86103adant3 1101 . . . . . . . 8 ((𝜑𝑥𝐼𝑦𝐽) → 𝑋𝐵)
8711fvmpt2 6330 . . . . . . . 8 ((𝑥𝐼𝑋𝐵) → ((𝑥𝐼𝑋)‘𝑥) = 𝑋)
8885, 86, 87syl2anc 694 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → ((𝑥𝐼𝑋)‘𝑥) = 𝑋)
89 simp3 1083 . . . . . . . 8 ((𝜑𝑥𝐼𝑦𝐽) → 𝑦𝐽)
90163adant2 1100 . . . . . . . 8 ((𝜑𝑥𝐼𝑦𝐽) → 𝑌𝐵)
9117fvmpt2 6330 . . . . . . . 8 ((𝑦𝐽𝑌𝐵) → ((𝑦𝐽𝑌)‘𝑦) = 𝑌)
9289, 90, 91syl2anc 694 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → ((𝑦𝐽𝑌)‘𝑦) = 𝑌)
9388, 92oveq12d 6708 . . . . . 6 ((𝜑𝑥𝐼𝑦𝐽) → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)) = (𝑋 · 𝑌))
9493mpt2eq3dva 6761 . . . . 5 (𝜑 → (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)))
9584, 94syl5eq 2697 . . . 4 (𝜑 → (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)))
9695oveq2d 6706 . . 3 (𝜑 → (𝑅 Σg (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))) = (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))))
97 nfcv 2793 . . . . . . 7 𝑥𝑅
98 nfcv 2793 . . . . . . 7 𝑥 Σg
99 nfcv 2793 . . . . . . . 8 𝑥𝐽
10099, 74nfmpt 4779 . . . . . . 7 𝑥(𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
10197, 98, 100nfov 6716 . . . . . 6 𝑥(𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))))
102 nfcv 2793 . . . . . 6 𝑖(𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))))
10381oveq1d 6705 . . . . . . . . 9 (𝑖 = 𝑥 → (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗)))
104103mpteq2dv 4778 . . . . . . . 8 (𝑖 = 𝑥 → (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗))))
105 nfcv 2793 . . . . . . . . . 10 𝑦((𝑥𝐼𝑋)‘𝑥)
106105, 76, 77nfov 6716 . . . . . . . . 9 𝑦(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗))
10782oveq2d 6706 . . . . . . . . 9 (𝑗 = 𝑦 → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗)) = (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
108106, 80, 107cbvmpt 4782 . . . . . . . 8 (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))
109104, 108syl6eq 2701 . . . . . . 7 (𝑖 = 𝑥 → (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))) = (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))))
110109oveq2d 6706 . . . . . 6 (𝑖 = 𝑥 → (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))) = (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))))
111101, 102, 110cbvmpt 4782 . . . . 5 (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))))
112933expa 1284 . . . . . . . 8 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)) = (𝑋 · 𝑌))
113112mpteq2dva 4777 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑦𝐽 ↦ (𝑋 · 𝑌)))
114113oveq2d 6706 . . . . . 6 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)))) = (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))
115114mpteq2dva 4777 . . . . 5 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌)))))
116111, 115syl5eq 2697 . . . 4 (𝜑 → (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌)))))
117116oveq2d 6706 . . 3 (𝜑 → (𝑅 Σg (𝑖𝐼 ↦ (𝑅 Σg (𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))))) = (𝑅 Σg (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))))
11870, 96, 1173eqtr3d 2693 . 2 (𝜑 → (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))) = (𝑅 Σg (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))))
119 eqid 2651 . . . . 5 (+g𝑅) = (+g𝑅)
1203adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝑅 ∈ Ring)
1217adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝐽𝑊)
12216adantlr 751 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑌𝐵)
12327adantr 480 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽𝑌) finSupp 0 )
1241, 2, 119, 22, 120, 121, 10, 122, 123gsummulc2 18653 . . . 4 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))) = (𝑋 · (𝑅 Σg (𝑦𝐽𝑌))))
125124mpteq2dva 4777 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌)))) = (𝑥𝐼 ↦ (𝑋 · (𝑅 Σg (𝑦𝐽𝑌)))))
126125oveq2d 6706 . 2 (𝜑 → (𝑅 Σg (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽 ↦ (𝑋 · 𝑌))))) = (𝑅 Σg (𝑥𝐼 ↦ (𝑋 · (𝑅 Σg (𝑦𝐽𝑌))))))
1271, 2, 5, 7, 18, 27gsumcl 18362 . . 3 (𝜑 → (𝑅 Σg (𝑦𝐽𝑌)) ∈ 𝐵)
1281, 2, 119, 22, 3, 6, 127, 10, 25gsummulc1 18652 . 2 (𝜑 → (𝑅 Σg (𝑥𝐼 ↦ (𝑋 · (𝑅 Σg (𝑦𝐽𝑌))))) = ((𝑅 Σg (𝑥𝐼𝑋)) · (𝑅 Σg (𝑦𝐽𝑌))))
129118, 126, 1283eqtrrd 2690 1 (𝜑 → ((𝑅 Σg (𝑥𝐼𝑋)) · (𝑅 Σg (𝑦𝐽𝑌))) = (𝑅 Σg (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  Vcvv 3231  cdif 3604  wss 3607   class class class wbr 4685  cmpt 4762   × cxp 5141  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692   supp csupp 7340  Fincfn 7997   finSupp cfsupp 8316  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  0gc0g 16147   Σg cgsu 16148  CMndccmn 18239  Ringcrg 18593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-gsum 16150  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-mulg 17588  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595
This theorem is referenced by:  evlslem2  19560
  Copyright terms: Public domain W3C validator