MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem1 Structured version   Visualization version   GIF version

Theorem ipasslem1 27995
Description: Lemma for ipassi 28005. Show the inner product associative law for nonnegative integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem1 ((𝑁 ∈ ℕ0𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem1
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0cn 11494 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
2 ax-1cn 10186 . . . . . . . . . . . 12 1 ∈ ℂ
3 ip1i.9 . . . . . . . . . . . . . 14 𝑈 ∈ CPreHilOLD
43phnvi 27980 . . . . . . . . . . . . 13 𝑈 ∈ NrmCVec
5 ip1i.1 . . . . . . . . . . . . . 14 𝑋 = (BaseSet‘𝑈)
6 ip1i.2 . . . . . . . . . . . . . 14 𝐺 = ( +𝑣𝑈)
7 ip1i.4 . . . . . . . . . . . . . 14 𝑆 = ( ·𝑠OLD𝑈)
85, 6, 7nvdir 27795 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
94, 8mpan 708 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
102, 9mp3an2 1561 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
111, 10sylan 489 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
125, 7nvsid 27791 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
134, 12mpan 708 . . . . . . . . . . . 12 (𝐴𝑋 → (1𝑆𝐴) = 𝐴)
1413adantl 473 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴𝑋) → (1𝑆𝐴) = 𝐴)
1514oveq2d 6829 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)) = ((𝑘𝑆𝐴)𝐺𝐴))
1611, 15eqtrd 2794 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺𝐴))
1716oveq1d 6828 . . . . . . . 8 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵))
18 ipasslem1.b . . . . . . . . . . . . 13 𝐵𝑋
19 ip1i.7 . . . . . . . . . . . . . 14 𝑃 = (·𝑖OLD𝑈)
205, 19dipcl 27876 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
214, 18, 20mp3an13 1564 . . . . . . . . . . . 12 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
2221mulid2d 10250 . . . . . . . . . . 11 (𝐴𝑋 → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2322adantl 473 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2423oveq2d 6829 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
255, 7nvscl 27790 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ℂ ∧ 𝐴𝑋) → (𝑘𝑆𝐴) ∈ 𝑋)
264, 25mp3an1 1560 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 𝐴𝑋) → (𝑘𝑆𝐴) ∈ 𝑋)
271, 26sylan 489 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → (𝑘𝑆𝐴) ∈ 𝑋)
285, 6, 7, 19, 3ipdiri 27994 . . . . . . . . . . 11 (((𝑘𝑆𝐴) ∈ 𝑋𝐴𝑋𝐵𝑋) → (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
2918, 28mp3an3 1562 . . . . . . . . . 10 (((𝑘𝑆𝐴) ∈ 𝑋𝐴𝑋) → (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
3027, 29sylancom 704 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
3124, 30eqtr4d 2797 . . . . . . . 8 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))) = (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵))
3217, 31eqtr4d 2797 . . . . . . 7 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))))
33 oveq1 6820 . . . . . . 7 (((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵)) → (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
3432, 33sylan9eq 2814 . . . . . 6 (((𝑘 ∈ ℕ0𝐴𝑋) ∧ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
35 adddir 10223 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
362, 35mp3an2 1561 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
371, 21, 36syl2an 495 . . . . . . 7 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
3837adantr 472 . . . . . 6 (((𝑘 ∈ ℕ0𝐴𝑋) ∧ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
3934, 38eqtr4d 2797 . . . . 5 (((𝑘 ∈ ℕ0𝐴𝑋) ∧ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))
4039exp31 631 . . . 4 (𝑘 ∈ ℕ0 → (𝐴𝑋 → (((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵)) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))))
4140a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝐴𝑋 → ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → (𝐴𝑋 → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))))
42 eqid 2760 . . . . . 6 (0vec𝑈) = (0vec𝑈)
435, 42, 19dip0l 27882 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((0vec𝑈)𝑃𝐵) = 0)
444, 18, 43mp2an 710 . . . 4 ((0vec𝑈)𝑃𝐵) = 0
455, 7, 42nv0 27801 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0𝑆𝐴) = (0vec𝑈))
464, 45mpan 708 . . . . 5 (𝐴𝑋 → (0𝑆𝐴) = (0vec𝑈))
4746oveq1d 6828 . . . 4 (𝐴𝑋 → ((0𝑆𝐴)𝑃𝐵) = ((0vec𝑈)𝑃𝐵))
4821mul02d 10426 . . . 4 (𝐴𝑋 → (0 · (𝐴𝑃𝐵)) = 0)
4944, 47, 483eqtr4a 2820 . . 3 (𝐴𝑋 → ((0𝑆𝐴)𝑃𝐵) = (0 · (𝐴𝑃𝐵)))
50 oveq1 6820 . . . . . 6 (𝑗 = 0 → (𝑗𝑆𝐴) = (0𝑆𝐴))
5150oveq1d 6828 . . . . 5 (𝑗 = 0 → ((𝑗𝑆𝐴)𝑃𝐵) = ((0𝑆𝐴)𝑃𝐵))
52 oveq1 6820 . . . . 5 (𝑗 = 0 → (𝑗 · (𝐴𝑃𝐵)) = (0 · (𝐴𝑃𝐵)))
5351, 52eqeq12d 2775 . . . 4 (𝑗 = 0 → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ ((0𝑆𝐴)𝑃𝐵) = (0 · (𝐴𝑃𝐵))))
5453imbi2d 329 . . 3 (𝑗 = 0 → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → ((0𝑆𝐴)𝑃𝐵) = (0 · (𝐴𝑃𝐵)))))
55 oveq1 6820 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝑆𝐴) = (𝑘𝑆𝐴))
5655oveq1d 6828 . . . . 5 (𝑗 = 𝑘 → ((𝑗𝑆𝐴)𝑃𝐵) = ((𝑘𝑆𝐴)𝑃𝐵))
57 oveq1 6820 . . . . 5 (𝑗 = 𝑘 → (𝑗 · (𝐴𝑃𝐵)) = (𝑘 · (𝐴𝑃𝐵)))
5856, 57eqeq12d 2775 . . . 4 (𝑗 = 𝑘 → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))))
5958imbi2d 329 . . 3 (𝑗 = 𝑘 → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵)))))
60 oveq1 6820 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝑗𝑆𝐴) = ((𝑘 + 1)𝑆𝐴))
6160oveq1d 6828 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑗𝑆𝐴)𝑃𝐵) = (((𝑘 + 1)𝑆𝐴)𝑃𝐵))
62 oveq1 6820 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑗 · (𝐴𝑃𝐵)) = ((𝑘 + 1) · (𝐴𝑃𝐵)))
6361, 62eqeq12d 2775 . . . 4 (𝑗 = (𝑘 + 1) → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵))))
6463imbi2d 329 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))))
65 oveq1 6820 . . . . . 6 (𝑗 = 𝑁 → (𝑗𝑆𝐴) = (𝑁𝑆𝐴))
6665oveq1d 6828 . . . . 5 (𝑗 = 𝑁 → ((𝑗𝑆𝐴)𝑃𝐵) = ((𝑁𝑆𝐴)𝑃𝐵))
67 oveq1 6820 . . . . 5 (𝑗 = 𝑁 → (𝑗 · (𝐴𝑃𝐵)) = (𝑁 · (𝐴𝑃𝐵)))
6866, 67eqeq12d 2775 . . . 4 (𝑗 = 𝑁 → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))))
6968imbi2d 329 . . 3 (𝑗 = 𝑁 → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))))
7041, 49, 54, 59, 64, 69nn0indALT 11665 . 2 (𝑁 ∈ ℕ0 → (𝐴𝑋 → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))))
7170imp 444 1 ((𝑁 ∈ ℕ0𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  cfv 6049  (class class class)co 6813  cc 10126  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133  0cn0 11484  NrmCVeccnv 27748   +𝑣 cpv 27749  BaseSetcba 27750   ·𝑠OLD cns 27751  0veccn0v 27752  ·𝑖OLDcdip 27864  CPreHilOLDccphlo 27976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616  df-grpo 27656  df-gid 27657  df-ginv 27658  df-ablo 27708  df-vc 27723  df-nv 27756  df-va 27759  df-ba 27760  df-sm 27761  df-0v 27762  df-nmcv 27764  df-dip 27865  df-ph 27977
This theorem is referenced by:  ipasslem2  27996  ipasslem3  27997  ipasslem4  27998
  Copyright terms: Public domain W3C validator