MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvscl Structured version   Visualization version   GIF version

Theorem nvscl 28403
Description: Closure law for the scalar product operation of a normed complex vector space. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvscl.1 𝑋 = (BaseSet‘𝑈)
nvscl.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvscl ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)

Proof of Theorem nvscl
StepHypRef Expression
1 eqid 2821 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 28392 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 eqid 2821 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
43vafval 28380 . . 3 ( +𝑣𝑈) = (1st ‘(1st𝑈))
5 nvscl.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
65smfval 28382 . . 3 𝑆 = (2nd ‘(1st𝑈))
7 nvscl.1 . . . 4 𝑋 = (BaseSet‘𝑈)
87, 3bafval 28381 . . 3 𝑋 = ran ( +𝑣𝑈)
94, 6, 8vccl 28340 . 2 (((1st𝑈) ∈ CVecOLD𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)
102, 9syl3an1 1159 1 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  1st c1st 7687  cc 10535  CVecOLDcvc 28335  NrmCVeccnv 28361   +𝑣 cpv 28362  BaseSetcba 28363   ·𝑠OLD cns 28364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-1st 7689  df-2nd 7690  df-vc 28336  df-nv 28369  df-va 28372  df-ba 28373  df-sm 28374  df-0v 28375  df-nmcv 28377
This theorem is referenced by:  nvmval2  28420  nvmf  28422  nvmdi  28425  nvnegneg  28426  nvpncan2  28430  nvaddsub4  28434  nvdif  28443  nvpi  28444  nvmtri  28448  nvabs  28449  nvge0  28450  imsmetlem  28467  smcnlem  28474  ipval2lem2  28481  4ipval2  28485  ipval3  28486  sspmval  28510  lnocoi  28534  lnomul  28537  0lno  28567  nmlno0lem  28570  nmblolbii  28576  blocnilem  28581  ip0i  28602  ip1ilem  28603  ipdirilem  28606  ipasslem1  28608  ipasslem2  28609  ipasslem4  28611  ipasslem5  28612  ipasslem8  28614  ipasslem9  28615  ipasslem10  28616  ipasslem11  28617  dipassr  28623  dipsubdir  28625  siilem1  28628  ipblnfi  28632  ubthlem2  28648  minvecolem2  28652  hhshsslem2  29045
  Copyright terms: Public domain W3C validator