MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipblnfi Structured version   Visualization version   GIF version

Theorem ipblnfi 28634
Description: A function 𝐹 generated by varying the first argument of an inner product (with its second argument a fixed vector 𝐴) is a bounded linear functional, i.e. a bounded linear operator from the vector space to . (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipblnfi.1 𝑋 = (BaseSet‘𝑈)
ipblnfi.7 𝑃 = (·𝑖OLD𝑈)
ipblnfi.9 𝑈 ∈ CPreHilOLD
ipblnfi.c 𝐶 = ⟨⟨ + , · ⟩, abs⟩
ipblnfi.l 𝐵 = (𝑈 BLnOp 𝐶)
ipblnfi.f 𝐹 = (𝑥𝑋 ↦ (𝑥𝑃𝐴))
Assertion
Ref Expression
ipblnfi (𝐴𝑋𝐹𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑈   𝑥,𝑋   𝑥,𝑃
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem ipblnfi
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipblnfi.9 . . . . . . 7 𝑈 ∈ CPreHilOLD
21phnvi 28595 . . . . . 6 𝑈 ∈ NrmCVec
3 ipblnfi.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
4 ipblnfi.7 . . . . . . 7 𝑃 = (·𝑖OLD𝑈)
53, 4dipcl 28491 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝐴𝑋) → (𝑥𝑃𝐴) ∈ ℂ)
62, 5mp3an1 1444 . . . . 5 ((𝑥𝑋𝐴𝑋) → (𝑥𝑃𝐴) ∈ ℂ)
76ancoms 461 . . . 4 ((𝐴𝑋𝑥𝑋) → (𝑥𝑃𝐴) ∈ ℂ)
8 ipblnfi.f . . . 4 𝐹 = (𝑥𝑋 ↦ (𝑥𝑃𝐴))
97, 8fmptd 6880 . . 3 (𝐴𝑋𝐹:𝑋⟶ℂ)
10 eqid 2823 . . . . . . . . . . 11 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
113, 10nvscl 28405 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ ℂ ∧ 𝑧𝑋) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
122, 11mp3an1 1444 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝑧𝑋) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
1312ad2ant2lr 746 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
14 simprr 771 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝑤𝑋)
15 simpll 765 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝐴𝑋)
16 eqid 2823 . . . . . . . . . 10 ( +𝑣𝑈) = ( +𝑣𝑈)
173, 16, 4dipdir 28621 . . . . . . . . 9 ((𝑈 ∈ CPreHilOLD ∧ ((𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋𝐴𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)))
181, 17mpan 688 . . . . . . . 8 (((𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋𝐴𝑋) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)))
1913, 14, 15, 18syl3anc 1367 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)))
20 simplr 767 . . . . . . . . 9 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝑦 ∈ ℂ)
21 simprl 769 . . . . . . . . 9 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝑧𝑋)
223, 16, 10, 4, 1ipassi 28620 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝑧𝑋𝐴𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) = (𝑦 · (𝑧𝑃𝐴)))
2320, 21, 15, 22syl3anc 1367 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) = (𝑦 · (𝑧𝑃𝐴)))
2423oveq1d 7173 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴)))
2519, 24eqtrd 2858 . . . . . 6 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴)))
2612adantll 712 . . . . . . . . 9 (((𝐴𝑋𝑦 ∈ ℂ) ∧ 𝑧𝑋) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
273, 16nvgcl 28399 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
282, 27mp3an1 1444 . . . . . . . . 9 (((𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
2926, 28sylan 582 . . . . . . . 8 ((((𝐴𝑋𝑦 ∈ ℂ) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
3029anasss 469 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
31 oveq1 7165 . . . . . . . 8 (𝑥 = ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) → (𝑥𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴))
32 ovex 7191 . . . . . . . 8 (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) ∈ V
3331, 8, 32fvmpt 6770 . . . . . . 7 (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋 → (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴))
3430, 33syl 17 . . . . . 6 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴))
35 oveq1 7165 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝑃𝐴) = (𝑧𝑃𝐴))
36 ovex 7191 . . . . . . . . . 10 (𝑧𝑃𝐴) ∈ V
3735, 8, 36fvmpt 6770 . . . . . . . . 9 (𝑧𝑋 → (𝐹𝑧) = (𝑧𝑃𝐴))
3837ad2antrl 726 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) = (𝑧𝑃𝐴))
3938oveq2d 7174 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦 · (𝐹𝑧)) = (𝑦 · (𝑧𝑃𝐴)))
40 oveq1 7165 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥𝑃𝐴) = (𝑤𝑃𝐴))
41 ovex 7191 . . . . . . . . 9 (𝑤𝑃𝐴) ∈ V
4240, 8, 41fvmpt 6770 . . . . . . . 8 (𝑤𝑋 → (𝐹𝑤) = (𝑤𝑃𝐴))
4342ad2antll 727 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) = (𝑤𝑃𝐴))
4439, 43oveq12d 7176 . . . . . 6 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴)))
4525, 34, 443eqtr4d 2868 . . . . 5 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))
4645ralrimivva 3193 . . . 4 ((𝐴𝑋𝑦 ∈ ℂ) → ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))
4746ralrimiva 3184 . . 3 (𝐴𝑋 → ∀𝑦 ∈ ℂ ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))
48 ipblnfi.c . . . . 5 𝐶 = ⟨⟨ + , · ⟩, abs⟩
4948cnnv 28456 . . . 4 𝐶 ∈ NrmCVec
5048cnnvba 28458 . . . . 5 ℂ = (BaseSet‘𝐶)
5148cnnvg 28457 . . . . 5 + = ( +𝑣𝐶)
5248cnnvs 28459 . . . . 5 · = ( ·𝑠OLD𝐶)
53 eqid 2823 . . . . 5 (𝑈 LnOp 𝐶) = (𝑈 LnOp 𝐶)
543, 50, 16, 51, 10, 52, 53islno 28532 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ NrmCVec) → (𝐹 ∈ (𝑈 LnOp 𝐶) ↔ (𝐹:𝑋⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))))
552, 49, 54mp2an 690 . . 3 (𝐹 ∈ (𝑈 LnOp 𝐶) ↔ (𝐹:𝑋⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤))))
569, 47, 55sylanbrc 585 . 2 (𝐴𝑋𝐹 ∈ (𝑈 LnOp 𝐶))
57 eqid 2823 . . . 4 (normCV𝑈) = (normCV𝑈)
583, 57nvcl 28440 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((normCV𝑈)‘𝐴) ∈ ℝ)
592, 58mpan 688 . 2 (𝐴𝑋 → ((normCV𝑈)‘𝐴) ∈ ℝ)
603, 57, 4, 1sii 28633 . . . . 5 ((𝑧𝑋𝐴𝑋) → (abs‘(𝑧𝑃𝐴)) ≤ (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
6160ancoms 461 . . . 4 ((𝐴𝑋𝑧𝑋) → (abs‘(𝑧𝑃𝐴)) ≤ (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
6237adantl 484 . . . . 5 ((𝐴𝑋𝑧𝑋) → (𝐹𝑧) = (𝑧𝑃𝐴))
6362fveq2d 6676 . . . 4 ((𝐴𝑋𝑧𝑋) → (abs‘(𝐹𝑧)) = (abs‘(𝑧𝑃𝐴)))
6459recnd 10671 . . . . 5 (𝐴𝑋 → ((normCV𝑈)‘𝐴) ∈ ℂ)
653, 57nvcl 28440 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → ((normCV𝑈)‘𝑧) ∈ ℝ)
662, 65mpan 688 . . . . . 6 (𝑧𝑋 → ((normCV𝑈)‘𝑧) ∈ ℝ)
6766recnd 10671 . . . . 5 (𝑧𝑋 → ((normCV𝑈)‘𝑧) ∈ ℂ)
68 mulcom 10625 . . . . 5 ((((normCV𝑈)‘𝐴) ∈ ℂ ∧ ((normCV𝑈)‘𝑧) ∈ ℂ) → (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)) = (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
6964, 67, 68syl2an 597 . . . 4 ((𝐴𝑋𝑧𝑋) → (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)) = (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
7061, 63, 693brtr4d 5100 . . 3 ((𝐴𝑋𝑧𝑋) → (abs‘(𝐹𝑧)) ≤ (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)))
7170ralrimiva 3184 . 2 (𝐴𝑋 → ∀𝑧𝑋 (abs‘(𝐹𝑧)) ≤ (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)))
7248cnnvnm 28460 . . 3 abs = (normCV𝐶)
73 ipblnfi.l . . 3 𝐵 = (𝑈 BLnOp 𝐶)
743, 57, 72, 53, 73, 2, 49blo3i 28581 . 2 ((𝐹 ∈ (𝑈 LnOp 𝐶) ∧ ((normCV𝑈)‘𝐴) ∈ ℝ ∧ ∀𝑧𝑋 (abs‘(𝐹𝑧)) ≤ (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧))) → 𝐹𝐵)
7556, 59, 71, 74syl3anc 1367 1 (𝐴𝑋𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  cop 4575   class class class wbr 5068  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538   + caddc 10542   · cmul 10544  cle 10678  abscabs 14595  NrmCVeccnv 28363   +𝑣 cpv 28364  BaseSetcba 28365   ·𝑠OLD cns 28366  normCVcnmcv 28369  ·𝑖OLDcdip 28479   LnOp clno 28519   BLnOp cblo 28521  CPreHilOLDccphlo 28591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-cn 21837  df-cnp 21838  df-t1 21924  df-haus 21925  df-tx 22172  df-hmeo 22365  df-xms 22932  df-ms 22933  df-tms 22934  df-grpo 28272  df-gid 28273  df-ginv 28274  df-gdiv 28275  df-ablo 28324  df-vc 28338  df-nv 28371  df-va 28374  df-ba 28375  df-sm 28376  df-0v 28377  df-vs 28378  df-nmcv 28379  df-ims 28380  df-dip 28480  df-lno 28523  df-nmoo 28524  df-blo 28525  df-0o 28526  df-ph 28592
This theorem is referenced by:  htthlem  28696
  Copyright terms: Public domain W3C validator