MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lawcoslem1 Structured version   Visualization version   GIF version

Theorem lawcoslem1 24765
Description: Lemma for lawcos 24766. Here we prove the law for a point at the origin and two distinct points U and V, using an expanded version of the signed angle expression on the complex plane. (Contributed by David A. Wheeler, 11-Jun-2015.)
Hypotheses
Ref Expression
lawcoslem1.1 (𝜑𝑈 ∈ ℂ)
lawcoslem1.2 (𝜑𝑉 ∈ ℂ)
lawcoslem1.3 (𝜑𝑈 ≠ 0)
lawcoslem1.4 (𝜑𝑉 ≠ 0)
Assertion
Ref Expression
lawcoslem1 (𝜑 → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))))

Proof of Theorem lawcoslem1
StepHypRef Expression
1 lawcoslem1.1 . . 3 (𝜑𝑈 ∈ ℂ)
2 lawcoslem1.2 . . 3 (𝜑𝑉 ∈ ℂ)
3 sqabssub 14242 . . 3 ((𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ) → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (ℜ‘(𝑈 · (∗‘𝑉))))))
41, 2, 3syl2anc 696 . 2 (𝜑 → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (ℜ‘(𝑈 · (∗‘𝑉))))))
5 lawcoslem1.4 . . . . . . . . 9 (𝜑𝑉 ≠ 0)
61, 2, 5absdivd 14413 . . . . . . . 8 (𝜑 → (abs‘(𝑈 / 𝑉)) = ((abs‘𝑈) / (abs‘𝑉)))
76oveq2d 6830 . . . . . . 7 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉))) = ((ℜ‘(𝑈 / 𝑉)) / ((abs‘𝑈) / (abs‘𝑉))))
87oveq2d 6830 . . . . . 6 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))) = (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
91abscld 14394 . . . . . . . . 9 (𝜑 → (abs‘𝑈) ∈ ℝ)
102abscld 14394 . . . . . . . . 9 (𝜑 → (abs‘𝑉) ∈ ℝ)
119, 10remulcld 10282 . . . . . . . 8 (𝜑 → ((abs‘𝑈) · (abs‘𝑉)) ∈ ℝ)
1211recnd 10280 . . . . . . 7 (𝜑 → ((abs‘𝑈) · (abs‘𝑉)) ∈ ℂ)
131, 2, 5divcld 11013 . . . . . . . . 9 (𝜑 → (𝑈 / 𝑉) ∈ ℂ)
1413recld 14153 . . . . . . . 8 (𝜑 → (ℜ‘(𝑈 / 𝑉)) ∈ ℝ)
1514recnd 10280 . . . . . . 7 (𝜑 → (ℜ‘(𝑈 / 𝑉)) ∈ ℂ)
169recnd 10280 . . . . . . . 8 (𝜑 → (abs‘𝑈) ∈ ℂ)
1710recnd 10280 . . . . . . . 8 (𝜑 → (abs‘𝑉) ∈ ℂ)
182, 5absne0d 14405 . . . . . . . 8 (𝜑 → (abs‘𝑉) ≠ 0)
1916, 17, 18divcld 11013 . . . . . . 7 (𝜑 → ((abs‘𝑈) / (abs‘𝑉)) ∈ ℂ)
20 lawcoslem1.3 . . . . . . . . 9 (𝜑𝑈 ≠ 0)
211, 20absne0d 14405 . . . . . . . 8 (𝜑 → (abs‘𝑈) ≠ 0)
2216, 17, 21, 18divne0d 11029 . . . . . . 7 (𝜑 → ((abs‘𝑈) / (abs‘𝑉)) ≠ 0)
2312, 15, 19, 22div12d 11049 . . . . . 6 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))) = ((ℜ‘(𝑈 / 𝑉)) · (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
248, 23eqtrd 2794 . . . . 5 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))) = ((ℜ‘(𝑈 / 𝑉)) · (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
2512, 16, 17, 21, 18divdiv2d 11045 . . . . . . 7 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉))) = ((((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)) / (abs‘𝑈)))
2617sqvald 13219 . . . . . . . . . 10 (𝜑 → ((abs‘𝑉)↑2) = ((abs‘𝑉) · (abs‘𝑉)))
2726oveq1d 6829 . . . . . . . . 9 (𝜑 → (((abs‘𝑉)↑2) · (abs‘𝑈)) = (((abs‘𝑉) · (abs‘𝑉)) · (abs‘𝑈)))
2816, 17, 17mul31d 10459 . . . . . . . . 9 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)) = (((abs‘𝑉) · (abs‘𝑉)) · (abs‘𝑈)))
2927, 28eqtr4d 2797 . . . . . . . 8 (𝜑 → (((abs‘𝑉)↑2) · (abs‘𝑈)) = (((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)))
3029oveq1d 6829 . . . . . . 7 (𝜑 → ((((abs‘𝑉)↑2) · (abs‘𝑈)) / (abs‘𝑈)) = ((((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)) / (abs‘𝑈)))
3117sqcld 13220 . . . . . . . 8 (𝜑 → ((abs‘𝑉)↑2) ∈ ℂ)
3231, 16, 21divcan4d 11019 . . . . . . 7 (𝜑 → ((((abs‘𝑉)↑2) · (abs‘𝑈)) / (abs‘𝑈)) = ((abs‘𝑉)↑2))
3325, 30, 323eqtr2rd 2801 . . . . . 6 (𝜑 → ((abs‘𝑉)↑2) = (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉))))
3433oveq2d 6830 . . . . 5 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = ((ℜ‘(𝑈 / 𝑉)) · (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
3515, 31mulcomd 10273 . . . . . . 7 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = (((abs‘𝑉)↑2) · (ℜ‘(𝑈 / 𝑉))))
3610resqcld 13249 . . . . . . . 8 (𝜑 → ((abs‘𝑉)↑2) ∈ ℝ)
3736, 13remul2d 14186 . . . . . . 7 (𝜑 → (ℜ‘(((abs‘𝑉)↑2) · (𝑈 / 𝑉))) = (((abs‘𝑉)↑2) · (ℜ‘(𝑈 / 𝑉))))
3835, 37eqtr4d 2797 . . . . . 6 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = (ℜ‘(((abs‘𝑉)↑2) · (𝑈 / 𝑉))))
391, 31, 2, 5div12d 11049 . . . . . . . 8 (𝜑 → (𝑈 · (((abs‘𝑉)↑2) / 𝑉)) = (((abs‘𝑉)↑2) · (𝑈 / 𝑉)))
4031, 2, 5divrecd 11016 . . . . . . . . . 10 (𝜑 → (((abs‘𝑉)↑2) / 𝑉) = (((abs‘𝑉)↑2) · (1 / 𝑉)))
41 recval 14281 . . . . . . . . . . . . 13 ((𝑉 ∈ ℂ ∧ 𝑉 ≠ 0) → (1 / 𝑉) = ((∗‘𝑉) / ((abs‘𝑉)↑2)))
422, 5, 41syl2anc 696 . . . . . . . . . . . 12 (𝜑 → (1 / 𝑉) = ((∗‘𝑉) / ((abs‘𝑉)↑2)))
4342oveq2d 6830 . . . . . . . . . . 11 (𝜑 → (((abs‘𝑉)↑2) · (1 / 𝑉)) = (((abs‘𝑉)↑2) · ((∗‘𝑉) / ((abs‘𝑉)↑2))))
442cjcld 14155 . . . . . . . . . . . 12 (𝜑 → (∗‘𝑉) ∈ ℂ)
45 sqne0 13144 . . . . . . . . . . . . . 14 ((abs‘𝑉) ∈ ℂ → (((abs‘𝑉)↑2) ≠ 0 ↔ (abs‘𝑉) ≠ 0))
4617, 45syl 17 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝑉)↑2) ≠ 0 ↔ (abs‘𝑉) ≠ 0))
4718, 46mpbird 247 . . . . . . . . . . . 12 (𝜑 → ((abs‘𝑉)↑2) ≠ 0)
4844, 31, 47divcan2d 11015 . . . . . . . . . . 11 (𝜑 → (((abs‘𝑉)↑2) · ((∗‘𝑉) / ((abs‘𝑉)↑2))) = (∗‘𝑉))
4943, 48eqtrd 2794 . . . . . . . . . 10 (𝜑 → (((abs‘𝑉)↑2) · (1 / 𝑉)) = (∗‘𝑉))
5040, 49eqtrd 2794 . . . . . . . . 9 (𝜑 → (((abs‘𝑉)↑2) / 𝑉) = (∗‘𝑉))
5150oveq2d 6830 . . . . . . . 8 (𝜑 → (𝑈 · (((abs‘𝑉)↑2) / 𝑉)) = (𝑈 · (∗‘𝑉)))
5239, 51eqtr3d 2796 . . . . . . 7 (𝜑 → (((abs‘𝑉)↑2) · (𝑈 / 𝑉)) = (𝑈 · (∗‘𝑉)))
5352fveq2d 6357 . . . . . 6 (𝜑 → (ℜ‘(((abs‘𝑉)↑2) · (𝑈 / 𝑉))) = (ℜ‘(𝑈 · (∗‘𝑉))))
5438, 53eqtrd 2794 . . . . 5 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = (ℜ‘(𝑈 · (∗‘𝑉))))
5524, 34, 543eqtr2rd 2801 . . . 4 (𝜑 → (ℜ‘(𝑈 · (∗‘𝑉))) = (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))
5655oveq2d 6830 . . 3 (𝜑 → (2 · (ℜ‘(𝑈 · (∗‘𝑉)))) = (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉))))))
5756oveq2d 6830 . 2 (𝜑 → ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (ℜ‘(𝑈 · (∗‘𝑉))))) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))))
584, 57eqtrd 2794 1 (𝜑 → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  wcel 2139  wne 2932  cfv 6049  (class class class)co 6814  cc 10146  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153  cmin 10478   / cdiv 10896  2c2 11282  cexp 13074  ccj 14055  cre 14056  abscabs 14193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195
This theorem is referenced by:  lawcos  24766
  Copyright terms: Public domain W3C validator