Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lptioo1cn Structured version   Visualization version   GIF version

Theorem lptioo1cn 39282
Description: The lower bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lptioo1cn.1 𝐽 = (TopOpen‘ℂfld)
lptioo1cn.2 (𝜑𝐵 ∈ ℝ*)
lptioo1cn.3 (𝜑𝐴 ∈ ℝ)
lptioo1cn.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
lptioo1cn (𝜑𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))

Proof of Theorem lptioo1cn
StepHypRef Expression
1 eqid 2621 . . . . . 6 (topGen‘ran (,)) = (topGen‘ran (,))
2 lptioo1cn.3 . . . . . 6 (𝜑𝐴 ∈ ℝ)
3 lptioo1cn.2 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
4 lptioo1cn.4 . . . . . 6 (𝜑𝐴 < 𝐵)
51, 2, 3, 4lptioo1 39268 . . . . 5 (𝜑𝐴 ∈ ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)))
6 eqid 2621 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
76cnfldtop 22497 . . . . . . 7 (TopOpen‘ℂfld) ∈ Top
87a1i 11 . . . . . 6 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
9 ax-resscn 9937 . . . . . . . 8 ℝ ⊆ ℂ
10 unicntop 38690 . . . . . . . 8 ℂ = (TopOpen‘ℂfld)
119, 10sseqtri 3616 . . . . . . 7 ℝ ⊆ (TopOpen‘ℂfld)
1211a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ (TopOpen‘ℂfld))
13 ioossre 12177 . . . . . . 7 (𝐴(,)𝐵) ⊆ ℝ
1413a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
15 eqid 2621 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
166tgioo2 22514 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
1715, 16restlp 20897 . . . . . 6 (((TopOpen‘ℂfld) ∈ Top ∧ ℝ ⊆ (TopOpen‘ℂfld) ∧ (𝐴(,)𝐵) ⊆ ℝ) → ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ))
188, 12, 14, 17syl3anc 1323 . . . . 5 (𝜑 → ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ))
195, 18eleqtrd 2700 . . . 4 (𝜑𝐴 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ))
20 elin 3774 . . . 4 (𝐴 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ) ↔ (𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐴 ∈ ℝ))
2119, 20sylib 208 . . 3 (𝜑 → (𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐴 ∈ ℝ))
2221simpld 475 . 2 (𝜑𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)))
23 lptioo1cn.1 . . . . 5 𝐽 = (TopOpen‘ℂfld)
2423eqcomi 2630 . . . 4 (TopOpen‘ℂfld) = 𝐽
2524fveq2i 6151 . . 3 (limPt‘(TopOpen‘ℂfld)) = (limPt‘𝐽)
2625fveq1i 6149 . 2 ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) = ((limPt‘𝐽)‘(𝐴(,)𝐵))
2722, 26syl6eleq 2708 1 (𝜑𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  cin 3554  wss 3555   cuni 4402   class class class wbr 4613  ran crn 5075  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  *cxr 10017   < clt 10018  (,)cioo 12117  TopOpenctopn 16003  topGenctg 16019  fldccnfld 19665  Topctop 20617  limPtclp 20848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-rest 16004  df-topn 16005  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-xms 22035  df-ms 22036
This theorem is referenced by:  cncfiooiccre  39412  fourierdlem61  39691  fourierdlem75  39705  fourierdlem85  39715  fourierdlem88  39718  fourierdlem94  39724  fourierdlem95  39725  fourierdlem103  39733  fourierdlem104  39734  fourierdlem113  39743
  Copyright terms: Public domain W3C validator