Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem103 Structured version   Visualization version   GIF version

Theorem fourierdlem103 42375
Description: The half lower part of the integral equal to the fourier partial sum, converges to half the left limit of the original function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem103.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem103.xre (𝜑𝑋 ∈ ℝ)
fourierdlem103.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem103.m (𝜑𝑀 ∈ ℕ)
fourierdlem103.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem103.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem103.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem103.fbdioo ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
fourierdlem103.fdvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
fourierdlem103.fdvbd ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
fourierdlem103.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem103.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem103.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem103.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem103.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem103.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem103.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem103.z 𝑍 = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
fourierdlem103.e 𝐸 = (𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
fourierdlem103.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem103.w (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem103.a (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem103.b (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem103.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem103.o 𝑂 = (𝑈 ↾ (-π[,]𝑑))
fourierdlem103.t 𝑇 = ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
fourierdlem103.n 𝑁 = ((♯‘𝑇) − 1)
fourierdlem103.j 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
fourierdlem103.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem103.1 𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
fourierdlem103.ch (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
Assertion
Ref Expression
fourierdlem103 (𝜑𝑍 ⇝ (𝑊 / 2))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑖,𝑡,𝑤,𝑧   𝐷,𝑖,𝑚,𝑠   𝑛,𝐸   𝑖,𝐹,𝑘,𝑙,𝑠,𝑡   𝑚,𝐹,𝑘   𝑤,𝐹,𝑧,𝑘,𝑠   𝑒,𝐺,𝑘,𝑠   𝑖,𝐺,𝑡   𝑖,𝐻,𝑠   𝑘,𝐽,𝑙,𝑠   𝑓,𝐽,𝑘   𝑖,𝐽,𝑡   𝑚,𝐽   𝑤,𝐽,𝑧   𝐾,𝑠   𝐿,𝑙,𝑠,𝑡   𝑘,𝑀,𝑙,𝑠,𝑖,𝑡   𝑚,𝑀,𝑝,𝑖   𝑖,𝑁,𝑘,𝑙,𝑠,𝑡   𝑒,𝑁,𝑙   𝑓,𝑁   𝑚,𝑁   𝑤,𝑁,𝑧   𝑒,𝑂,𝑙,𝑠,𝑘   𝑡,𝑂   𝑄,𝑙,𝑠,𝑖,𝑡   𝑄,𝑝   𝑅,𝑙,𝑠,𝑡   𝑆,𝑠   𝑇,𝑓   𝑈,𝑑,𝑘,𝑠,𝑙   𝑈,𝑛,𝑘,𝑠   𝑖,𝑉,𝑘,𝑠   𝑉,𝑝   𝑡,𝑉   𝑖,𝑊,𝑘,𝑙,𝑠,𝑡   𝑚,𝑊,𝑛,𝑖   𝑤,𝑊,𝑧   𝑖,𝑋,𝑘,𝑙,𝑠,𝑡   𝑚,𝑋,𝑝   𝑤,𝑋,𝑧   𝑌,𝑠   𝑛,𝑍   𝑒,𝑑   𝑖,𝑑,𝜑,𝑡,𝑘,𝑙,𝑠   𝜑,𝑒   𝜒,𝑠   𝑓,𝑑,𝜑   𝑤,𝑑,𝑧,𝜑   𝑒,𝑛,𝜑   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑝)   𝜒(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐴(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐵(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐶(𝑒,𝑓,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝐷(𝑧,𝑤,𝑡,𝑒,𝑓,𝑘,𝑛,𝑝,𝑑,𝑙)   𝑃(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝑄(𝑧,𝑤,𝑒,𝑓,𝑘,𝑚,𝑛,𝑑)   𝑅(𝑧,𝑤,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑)   𝑆(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝑇(𝑧,𝑤,𝑡,𝑒,𝑖,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝑈(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑚,𝑝)   𝐸(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑠,𝑝,𝑑,𝑙)   𝐹(𝑒,𝑓,𝑛,𝑝,𝑑)   𝐺(𝑧,𝑤,𝑓,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐻(𝑧,𝑤,𝑡,𝑒,𝑓,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐽(𝑒,𝑛,𝑝,𝑑)   𝐾(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐿(𝑧,𝑤,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑)   𝑀(𝑧,𝑤,𝑒,𝑓,𝑛,𝑑)   𝑁(𝑛,𝑝,𝑑)   𝑂(𝑧,𝑤,𝑓,𝑖,𝑚,𝑛,𝑝,𝑑)   𝑉(𝑧,𝑤,𝑒,𝑓,𝑚,𝑛,𝑑,𝑙)   𝑊(𝑒,𝑓,𝑝,𝑑)   𝑋(𝑒,𝑓,𝑛,𝑑)   𝑌(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝑍(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑠,𝑝,𝑑,𝑙)

Proof of Theorem fourierdlem103
Dummy variables 𝑏 𝑟 𝑐 𝑢 𝑗 𝑦 𝑥 𝑣 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . 3 (ℤ‘1) = (ℤ‘1)
2 1zzd 12002 . . 3 (𝜑 → 1 ∈ ℤ)
3 nfv 1906 . . . . 5 𝑛𝜑
4 nfmpt1 5156 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)
5 nfmpt1 5156 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ π)
6 fourierdlem103.e . . . . . 6 𝐸 = (𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
7 nfmpt1 5156 . . . . . 6 𝑛(𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
86, 7nfcxfr 2975 . . . . 5 𝑛𝐸
9 nnuz 12270 . . . . 5 ℕ = (ℤ‘1)
10 pire 24973 . . . . . . . . . . . . . . . . 17 π ∈ ℝ
1110renegcli 10936 . . . . . . . . . . . . . . . 16 -π ∈ ℝ
1211a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ ℝ)
13 elioore 12758 . . . . . . . . . . . . . . . 16 (𝑑 ∈ (-π(,)0) → 𝑑 ∈ ℝ)
1413adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 ∈ ℝ)
15 fourierdlem103.f . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:ℝ⟶ℝ)
16 fourierdlem103.xre . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋 ∈ ℝ)
17 ioossre 12788 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋(,)+∞) ⊆ ℝ
1817a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
1915, 18fssresd 6539 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
20 ioosscn 41649 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋(,)+∞) ⊆ ℂ
2120a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
22 eqid 2821 . . . . . . . . . . . . . . . . . . . . . 22 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
23 pnfxr 10684 . . . . . . . . . . . . . . . . . . . . . . 23 +∞ ∈ ℝ*
2423a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → +∞ ∈ ℝ*)
2516ltpnfd 12506 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 < +∞)
2622, 24, 16, 25lptioo1cn 41807 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
27 fourierdlem103.y . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
2819, 21, 26, 27limcrecl 41790 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌 ∈ ℝ)
29 ioossre 12788 . . . . . . . . . . . . . . . . . . . . . . 23 (-∞(,)𝑋) ⊆ ℝ
3029a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (-∞(,)𝑋) ⊆ ℝ)
3115, 30fssresd 6539 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ)
32 ioosscn 41649 . . . . . . . . . . . . . . . . . . . . . 22 (-∞(,)𝑋) ⊆ ℂ
3332a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (-∞(,)𝑋) ⊆ ℂ)
34 mnfxr 10687 . . . . . . . . . . . . . . . . . . . . . . 23 -∞ ∈ ℝ*
3534a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ ∈ ℝ*)
3616mnfltd 12509 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ < 𝑋)
3722, 35, 16, 36lptioo2cn 41806 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋)))
38 fourierdlem103.w . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
3931, 33, 37, 38limcrecl 41790 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑊 ∈ ℝ)
40 fourierdlem103.h . . . . . . . . . . . . . . . . . . . 20 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
41 fourierdlem103.k . . . . . . . . . . . . . . . . . . . 20 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
42 fourierdlem103.u . . . . . . . . . . . . . . . . . . . 20 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
4315, 16, 28, 39, 40, 41, 42fourierdlem55 42327 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈:(-π[,]π)⟶ℝ)
44 ax-resscn 10583 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℂ
4544a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ℝ ⊆ ℂ)
4643, 45fssd 6522 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈:(-π[,]π)⟶ℂ)
4746adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑈:(-π[,]π)⟶ℂ)
4811a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → -π ∈ ℝ)
4910a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → π ∈ ℝ)
5048leidd 11195 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → -π ≤ -π)
51 0red 10633 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (-π(,)0) → 0 ∈ ℝ)
5211rexri 10688 . . . . . . . . . . . . . . . . . . . . . 22 -π ∈ ℝ*
53 0xr 10677 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ*
54 iooltub 41666 . . . . . . . . . . . . . . . . . . . . . 22 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑑 ∈ (-π(,)0)) → 𝑑 < 0)
5552, 53, 54mp3an12 1442 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (-π(,)0) → 𝑑 < 0)
56 pipos 24975 . . . . . . . . . . . . . . . . . . . . . 22 0 < π
5756a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (-π(,)0) → 0 < π)
5813, 51, 49, 55, 57lttrd 10790 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (-π(,)0) → 𝑑 < π)
5913, 49, 58ltled 10777 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → 𝑑 ≤ π)
60 iccss 12794 . . . . . . . . . . . . . . . . . . 19 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ -π ∧ 𝑑 ≤ π)) → (-π[,]𝑑) ⊆ (-π[,]π))
6148, 49, 50, 59, 60syl22anc 834 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ (-π(,)0) → (-π[,]𝑑) ⊆ (-π[,]π))
6261adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → (-π[,]𝑑) ⊆ (-π[,]π))
6347, 62fssresd 6539 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑈 ↾ (-π[,]𝑑)):(-π[,]𝑑)⟶ℂ)
64 fourierdlem103.o . . . . . . . . . . . . . . . . . 18 𝑂 = (𝑈 ↾ (-π[,]𝑑))
6564a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂 = (𝑈 ↾ (-π[,]𝑑)))
6665feq1d 6493 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑂:(-π[,]𝑑)⟶ℂ ↔ (𝑈 ↾ (-π[,]𝑑)):(-π[,]𝑑)⟶ℂ))
6763, 66mpbird 258 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂:(-π[,]𝑑)⟶ℂ)
68 fourierdlem103.n . . . . . . . . . . . . . . . . . . 19 𝑁 = ((♯‘𝑇) − 1)
6911elexi 3514 . . . . . . . . . . . . . . . . . . . . . . . . . 26 -π ∈ V
7069prid1 4692 . . . . . . . . . . . . . . . . . . . . . . . . 25 -π ∈ {-π, 𝑑}
71 elun1 4151 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-π ∈ {-π, 𝑑} → -π ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))))
7270, 71ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 -π ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
73 fourierdlem103.t . . . . . . . . . . . . . . . . . . . . . . . 24 𝑇 = ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
7472, 73eleqtrri 2912 . . . . . . . . . . . . . . . . . . . . . . 23 -π ∈ 𝑇
7574ne0ii 4302 . . . . . . . . . . . . . . . . . . . . . 22 𝑇 ≠ ∅
7675a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇 ≠ ∅)
77 prfi 8782 . . . . . . . . . . . . . . . . . . . . . . . . 25 {-π, 𝑑} ∈ Fin
7877a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → {-π, 𝑑} ∈ Fin)
79 fzfi 13330 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0...𝑀) ∈ Fin
80 fourierdlem103.q . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
8180rnmptfi 41307 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0...𝑀) ∈ Fin → ran 𝑄 ∈ Fin)
8279, 81ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ran 𝑄 ∈ Fin
8382a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ran 𝑄 ∈ Fin)
84 infi 8731 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran 𝑄 ∈ Fin → (ran 𝑄 ∩ (-π(,)𝑑)) ∈ Fin)
8583, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (ran 𝑄 ∩ (-π(,)𝑑)) ∈ Fin)
86 unfi 8774 . . . . . . . . . . . . . . . . . . . . . . . 24 (({-π, 𝑑} ∈ Fin ∧ (ran 𝑄 ∩ (-π(,)𝑑)) ∈ Fin) → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ∈ Fin)
8778, 85, 86syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ∈ Fin)
8873, 87eqeltrid 2917 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑇 ∈ Fin)
89 hashnncl 13717 . . . . . . . . . . . . . . . . . . . . . 22 (𝑇 ∈ Fin → ((♯‘𝑇) ∈ ℕ ↔ 𝑇 ≠ ∅))
9088, 89syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((♯‘𝑇) ∈ ℕ ↔ 𝑇 ≠ ∅))
9176, 90mpbird 258 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (♯‘𝑇) ∈ ℕ)
92 nnm1nn0 11927 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑇) ∈ ℕ → ((♯‘𝑇) − 1) ∈ ℕ0)
9391, 92syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((♯‘𝑇) − 1) ∈ ℕ0)
9468, 93eqeltrid 2917 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ0)
9594adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ∈ ℕ0)
96 0red 10633 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 0 ∈ ℝ)
97 1red 10631 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 1 ∈ ℝ)
9895nn0red 11945 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ∈ ℝ)
99 0lt1 11151 . . . . . . . . . . . . . . . . . . . 20 0 < 1
10099a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 0 < 1)
101 2re 11700 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
102101a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → 2 ∈ ℝ)
10391nnred 11642 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (♯‘𝑇) ∈ ℝ)
104103adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (♯‘𝑇) ∈ ℝ)
105 ioogtlb 41650 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑑 ∈ (-π(,)0)) → -π < 𝑑)
10652, 53, 105mp3an12 1442 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 ∈ (-π(,)0) → -π < 𝑑)
10748, 106ltned 10765 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑 ∈ (-π(,)0) → -π ≠ 𝑑)
108107adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑 ∈ (-π(,)0)) → -π ≠ 𝑑)
109 hashprg 13746 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-π ∈ ℝ ∧ 𝑑 ∈ ℝ) → (-π ≠ 𝑑 ↔ (♯‘{-π, 𝑑}) = 2))
11012, 14, 109syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑 ∈ (-π(,)0)) → (-π ≠ 𝑑 ↔ (♯‘{-π, 𝑑}) = 2))
111108, 110mpbid 233 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → (♯‘{-π, 𝑑}) = 2)
112111eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → 2 = (♯‘{-π, 𝑑}))
11388adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑇 ∈ Fin)
114 ssun1 4147 . . . . . . . . . . . . . . . . . . . . . . . 24 {-π, 𝑑} ⊆ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
115114, 73sseqtrri 4003 . . . . . . . . . . . . . . . . . . . . . . 23 {-π, 𝑑} ⊆ 𝑇
116 hashssle 41445 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑇 ∈ Fin ∧ {-π, 𝑑} ⊆ 𝑇) → (♯‘{-π, 𝑑}) ≤ (♯‘𝑇))
117113, 115, 116sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → (♯‘{-π, 𝑑}) ≤ (♯‘𝑇))
118112, 117eqbrtrd 5080 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → 2 ≤ (♯‘𝑇))
119102, 104, 97, 118lesub1dd 11245 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (2 − 1) ≤ ((♯‘𝑇) − 1))
120 1e2m1 11753 . . . . . . . . . . . . . . . . . . . 20 1 = (2 − 1)
121119, 120, 683brtr4g 5092 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 1 ≤ 𝑁)
12296, 97, 98, 100, 121ltletrd 10789 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 0 < 𝑁)
123122gt0ne0d 11193 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ≠ 0)
12495, 123jca 512 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑁 ∈ ℕ0𝑁 ≠ 0))
125 elnnne0 11900 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
126124, 125sylibr 235 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ∈ ℕ)
127 fourierdlem103.j . . . . . . . . . . . . . . . . . 18 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
12850adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → -π ≤ -π)
12948, 13, 106ltled 10777 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 ∈ (-π(,)0) → -π ≤ 𝑑)
130129adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → -π ≤ 𝑑)
13112, 14, 12, 128, 130eliccd 41659 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ (-π[,]𝑑))
13214leidd 11195 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑𝑑)
13312, 14, 14, 130, 132eliccd 41659 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 ∈ (-π[,]𝑑))
134131, 133jca 512 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (-π ∈ (-π[,]𝑑) ∧ 𝑑 ∈ (-π[,]𝑑)))
135 vex 3498 . . . . . . . . . . . . . . . . . . . . . 22 𝑑 ∈ V
13669, 135prss 4747 . . . . . . . . . . . . . . . . . . . . 21 ((-π ∈ (-π[,]𝑑) ∧ 𝑑 ∈ (-π[,]𝑑)) ↔ {-π, 𝑑} ⊆ (-π[,]𝑑))
137134, 136sylib 219 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → {-π, 𝑑} ⊆ (-π[,]𝑑))
138 inss2 4205 . . . . . . . . . . . . . . . . . . . . . 22 (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ (-π(,)𝑑)
139138a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ (-π(,)𝑑))
140 ioossicc 12812 . . . . . . . . . . . . . . . . . . . . 21 (-π(,)𝑑) ⊆ (-π[,]𝑑)
141139, 140sstrdi 3978 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ (-π[,]𝑑))
142137, 141unssd 4161 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ⊆ (-π[,]𝑑))
14373, 142eqsstrid 4014 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑇 ⊆ (-π[,]𝑑))
14474a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ 𝑇)
145135prid2 4693 . . . . . . . . . . . . . . . . . . . . 21 𝑑 ∈ {-π, 𝑑}
146 elun1 4151 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ {-π, 𝑑} → 𝑑 ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))))
147145, 146ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 𝑑 ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
148147, 73eleqtrri 2912 . . . . . . . . . . . . . . . . . . 19 𝑑𝑇
149148a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑𝑇)
150113, 68, 127, 12, 14, 143, 144, 149fourierdlem52 42324 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → ((𝐽:(0...𝑁)⟶(-π[,]𝑑) ∧ (𝐽‘0) = -π) ∧ (𝐽𝑁) = 𝑑))
151150simpld 495 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝐽:(0...𝑁)⟶(-π[,]𝑑) ∧ (𝐽‘0) = -π))
152151simpld 495 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐽:(0...𝑁)⟶(-π[,]𝑑))
153151simprd 496 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → (𝐽‘0) = -π)
154150simprd 496 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → (𝐽𝑁) = 𝑑)
155 elfzoelz 13028 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℤ)
156155zred 12076 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℝ)
157156adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℝ)
158157ltp1d 11559 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 < (𝑘 + 1))
15948, 13jca 512 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 ∈ (-π(,)0) → (-π ∈ ℝ ∧ 𝑑 ∈ ℝ))
16069, 135prss 4747 . . . . . . . . . . . . . . . . . . . . . . 23 ((-π ∈ ℝ ∧ 𝑑 ∈ ℝ) ↔ {-π, 𝑑} ⊆ ℝ)
161159, 160sylib 219 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (-π(,)0) → {-π, 𝑑} ⊆ ℝ)
162161adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → {-π, 𝑑} ⊆ ℝ)
163 ioossre 12788 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)𝑑) ⊆ ℝ
164138, 163sstri 3975 . . . . . . . . . . . . . . . . . . . . . 22 (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ ℝ
165164a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ ℝ)
166162, 165unssd 4161 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ⊆ ℝ)
16773, 166eqsstrid 4014 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑇 ⊆ ℝ)
168113, 167, 127, 68fourierdlem36 42309 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐽 Isom < , < ((0...𝑁), 𝑇))
169168adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐽 Isom < , < ((0...𝑁), 𝑇))
170 elfzofz 13043 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (0...𝑁))
171170adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0...𝑁))
172 fzofzp1 13124 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → (𝑘 + 1) ∈ (0...𝑁))
173172adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ (0...𝑁))
174 isorel 7068 . . . . . . . . . . . . . . . . 17 ((𝐽 Isom < , < ((0...𝑁), 𝑇) ∧ (𝑘 ∈ (0...𝑁) ∧ (𝑘 + 1) ∈ (0...𝑁))) → (𝑘 < (𝑘 + 1) ↔ (𝐽𝑘) < (𝐽‘(𝑘 + 1))))
175169, 171, 173, 174syl12anc 832 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 < (𝑘 + 1) ↔ (𝐽𝑘) < (𝐽‘(𝑘 + 1))))
176158, 175mpbid 233 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) < (𝐽‘(𝑘 + 1)))
17743adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑈:(-π[,]π)⟶ℝ)
178177, 62feqresmpt 6728 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑈 ↾ (-π[,]𝑑)) = (𝑠 ∈ (-π[,]𝑑) ↦ (𝑈𝑠)))
17962sselda 3966 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ (-π[,]π))
18015, 16, 28, 39, 40fourierdlem9 42282 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐻:(-π[,]π)⟶ℝ)
181180ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝐻:(-π[,]π)⟶ℝ)
182181, 179ffvelrnd 6845 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐻𝑠) ∈ ℝ)
18341fourierdlem43 42316 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐾:(-π[,]π)⟶ℝ
184183a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝐾:(-π[,]π)⟶ℝ)
185184, 179ffvelrnd 6845 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) ∈ ℝ)
186182, 185remulcld 10660 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
18742fvmpt2 6772 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
188179, 186, 187syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
18911a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ∈ ℝ)
19013adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 ∈ ℝ)
191 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ (-π[,]𝑑))
192 eliccre 41661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((-π ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℝ)
193189, 190, 191, 192syl3anc 1363 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℝ)
194 0red 10633 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 0 ∈ ℝ)
19552a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ∈ ℝ*)
196190rexrd 10680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 ∈ ℝ*)
197 iccleub 12782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((-π ∈ ℝ*𝑑 ∈ ℝ*𝑠 ∈ (-π[,]𝑑)) → 𝑠𝑑)
198195, 196, 191, 197syl3anc 1363 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠𝑑)
19955adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 < 0)
200193, 190, 194, 198, 199lelttrd 10787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 < 0)
201193, 200ltned 10765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ≠ 0)
202201adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ≠ 0)
203202neneqd 3021 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 𝑠 = 0)
204203iffalsed 4476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
205193, 194, 200ltnsymd 10778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 0 < 𝑠)
206205adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 0 < 𝑠)
207206iffalsed 4476 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
208207oveq2d 7161 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − 𝑊))
209208oveq1d 7160 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
210204, 209eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
21115ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝐹:ℝ⟶ℝ)
21216ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑋 ∈ ℝ)
213 iccssre 12808 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
21411, 10, 213mp2an 688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (-π[,]π) ⊆ ℝ
215214, 179sseldi 3964 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℝ)
216212, 215readdcld 10659 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑋 + 𝑠) ∈ ℝ)
217211, 216ffvelrnd 6845 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
21839ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑊 ∈ ℝ)
219217, 218resubcld 11057 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐹‘(𝑋 + 𝑠)) − 𝑊) ∈ ℝ)
220219, 215, 202redivcld 11457 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) ∈ ℝ)
221210, 220eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ)
22240fvmpt2 6772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
223179, 221, 222syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
224223, 204, 2093eqtrd 2860 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
22510a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → π ∈ ℝ)
226225renegcld 11056 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ∈ ℝ)
227 iccgelb 12783 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((-π ∈ ℝ*𝑑 ∈ ℝ*𝑠 ∈ (-π[,]𝑑)) → -π ≤ 𝑠)
228195, 196, 191, 227syl3anc 1363 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ≤ 𝑠)
22958adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 < π)
230193, 190, 225, 198, 229lelttrd 10787 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 < π)
231193, 225, 230ltled 10777 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ≤ π)
232226, 225, 193, 228, 231eliccd 41659 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ (-π[,]π))
233201neneqd 3021 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 𝑠 = 0)
234233iffalsed 4476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
235101a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ∈ ℝ)
236193rehalfcld 11873 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / 2) ∈ ℝ)
237236resincld 15486 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ∈ ℝ)
238235, 237remulcld 10660 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
239 2cn 11701 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 ∈ ℂ
240239a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ∈ ℂ)
241193recnd 10658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℂ)
242241halfcld 11871 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / 2) ∈ ℂ)
243242sincld 15473 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ∈ ℂ)
244 2ne0 11730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 ≠ 0
245244a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ≠ 0)
246 fourierdlem44 42317 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
247232, 201, 246syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ≠ 0)
248240, 243, 245, 247mulne0d 11281 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
249193, 238, 248redivcld 11457 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
250234, 249eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
25141fvmpt2 6772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
252232, 250, 251syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
253252adantll 710 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
254224, 253oveq12d 7163 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
255203iffalsed 4476 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
256255oveq2d 7161 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
257188, 254, 2563eqtrd 2860 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑈𝑠) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
258257mpteq2dva 5153 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑠 ∈ (-π[,]𝑑) ↦ (𝑈𝑠)) = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
25965, 178, 2583eqtrd 2860 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂 = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
260259adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑂 = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
261260reseq1d 5846 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
26215adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐹:ℝ⟶ℝ)
26316adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑋 ∈ ℝ)
264 fourierdlem103.p . . . . . . . . . . . . . . . . . 18 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
265 fourierdlem103.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℕ)
266265adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑀 ∈ ℕ)
267 fourierdlem103.v . . . . . . . . . . . . . . . . . . 19 (𝜑𝑉 ∈ (𝑃𝑀))
268267adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑉 ∈ (𝑃𝑀))
269 fourierdlem103.fcn . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
270269adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
271 fourierdlem103.r . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
272271adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
273 fourierdlem103.l . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
274273adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
275106adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → -π < 𝑑)
27652a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ ℝ*)
27753a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 0 ∈ ℝ*)
27855adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 < 0)
279276, 14, 277, 278gtnelicc 41655 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → ¬ 0 ∈ (-π[,]𝑑))
28039adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑊 ∈ ℝ)
281 eqid 2821 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
282 eqid 2821 . . . . . . . . . . . . . . . . . 18 (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2)))))
283 eqid 2821 . . . . . . . . . . . . . . . . . 18 (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2)))))
284 fveq2 6664 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑄𝑙) = (𝑄𝑖))
285 oveq1 7152 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑖 → (𝑙 + 1) = (𝑖 + 1))
286285fveq2d 6668 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑄‘(𝑙 + 1)) = (𝑄‘(𝑖 + 1)))
287284, 286oveq12d 7163 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑖 → ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
288287sseq2d 3998 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑖 → (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))) ↔ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
289288cbvriotav 7117 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) = (𝑖 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
290262, 263, 264, 266, 268, 270, 272, 274, 12, 14, 275, 62, 279, 280, 281, 80, 73, 68, 127, 282, 283, 289fourierdlem86 42358 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) ∧ (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘))) ∧ ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ)))
291290simprd 496 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
292261, 291eqeltrd 2913 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
293290simpld 495 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) ∧ (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘))))
294293simpld 495 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
295260eqcomd 2827 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = 𝑂)
296295reseq1d 5846 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
297296oveq1d 7160 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) = ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
298294, 297eleqtrd 2915 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
299293simprd 496 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
300296oveq1d 7160 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)) = ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
301299, 300eleqtrd 2915 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
302 eqid 2821 . . . . . . . . . . . . . . 15 (ℝ D 𝑂) = (ℝ D 𝑂)
30367adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑂:(-π[,]𝑑)⟶ℂ)
30411a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π ∈ ℝ)
30514ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ∈ ℝ)
306 elioore 12758 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) → 𝑠 ∈ ℝ)
307306adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ℝ)
30862, 214sstrdi 3978 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑 ∈ (-π(,)0)) → (-π[,]𝑑) ⊆ ℝ)
309308adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (-π[,]𝑑) ⊆ ℝ)
310152adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐽:(0...𝑁)⟶(-π[,]𝑑))
311310, 171ffvelrnd 6845 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ (-π[,]𝑑))
312309, 311sseldd 3967 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ ℝ)
313312adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) ∈ ℝ)
31452a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ*)
31514adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ∈ ℝ)
316315rexrd 10680 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ∈ ℝ*)
317 iccgelb 12783 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ*𝑑 ∈ ℝ* ∧ (𝐽𝑘) ∈ (-π[,]𝑑)) → -π ≤ (𝐽𝑘))
318314, 316, 311, 317syl3anc 1363 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ≤ (𝐽𝑘))
319318adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π ≤ (𝐽𝑘))
320313rexrd 10680 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) ∈ ℝ*)
321310, 173ffvelrnd 6845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ (-π[,]𝑑))
322309, 321sseldd 3967 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ ℝ)
323322rexrd 10680 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ ℝ*)
324323adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ∈ ℝ*)
325 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
326 ioogtlb 41650 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝑘) ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ ℝ*𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) < 𝑠)
327320, 324, 325, 326syl3anc 1363 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) < 𝑠)
328304, 313, 307, 319, 327lelttrd 10787 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π < 𝑠)
329304, 307, 328ltled 10777 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π ≤ 𝑠)
330322adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ∈ ℝ)
331 iooltub 41666 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝑘) ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ ℝ*𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < (𝐽‘(𝑘 + 1)))
332320, 324, 325, 331syl3anc 1363 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < (𝐽‘(𝑘 + 1)))
333 iccleub 12782 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ*𝑑 ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ (-π[,]𝑑)) → (𝐽‘(𝑘 + 1)) ≤ 𝑑)
334314, 316, 321, 333syl3anc 1363 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ≤ 𝑑)
335334adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ≤ 𝑑)
336307, 330, 305, 332, 335ltletrd 10789 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < 𝑑)
337307, 305, 336ltled 10777 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠𝑑)
338304, 305, 307, 329, 337eliccd 41659 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ (-π[,]𝑑))
339338ralrimiva 3182 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))𝑠 ∈ (-π[,]𝑑))
340 dfss3 3955 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]𝑑) ↔ ∀𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))𝑠 ∈ (-π[,]𝑑))
341339, 340sylibr 235 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]𝑑))
342303, 341feqresmpt 6728 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑂𝑠)))
343 simplll 771 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝜑)
344 simpllr 772 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ∈ (-π(,)0))
34564fveq1i 6665 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑂𝑠) = ((𝑈 ↾ (-π[,]𝑑))‘𝑠)
346345a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑂𝑠) = ((𝑈 ↾ (-π[,]𝑑))‘𝑠))
347 fvres 6683 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (-π[,]𝑑) → ((𝑈 ↾ (-π[,]𝑑))‘𝑠) = (𝑈𝑠))
348347adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝑈 ↾ (-π[,]𝑑))‘𝑠) = (𝑈𝑠))
349253, 255eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
350224, 349oveq12d 7163 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
351219recnd 10658 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐹‘(𝑋 + 𝑠)) − 𝑊) ∈ ℂ)
352241adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℂ)
353239a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ∈ ℂ)
354352halfcld 11871 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / 2) ∈ ℂ)
355354sincld 15473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ∈ ℂ)
356353, 355mulcld 10650 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
357248adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
358351, 352, 356, 202, 357dmdcan2d 11435 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
359188, 350, 3583eqtrd 2860 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
360346, 348, 3593eqtrd 2860 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑂𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
361343, 344, 338, 360syl21anc 833 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑂𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
362343, 344, 338, 358syl21anc 833 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
363362eqcomd 2827 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
364 eqidd 2822 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡)) = (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡)))
365 oveq2 7153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑠 → (𝑋 + 𝑡) = (𝑋 + 𝑠))
366365fveq2d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑠 → (𝐹‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑠)))
367366oveq1d 7160 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠 → ((𝐹‘(𝑋 + 𝑡)) − 𝑊) = ((𝐹‘(𝑋 + 𝑠)) − 𝑊))
368 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠𝑡 = 𝑠)
369367, 368oveq12d 7163 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
370369adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∧ 𝑡 = 𝑠) → (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
371 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
372 ovex 7178 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) ∈ V
373372a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) ∈ V)
374364, 370, 371, 373fvmptd 6768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
375 eqidd 2822 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))) = (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))))
376 oveq1 7152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑠 → (𝑡 / 2) = (𝑠 / 2))
377376fveq2d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑠 → (sin‘(𝑡 / 2)) = (sin‘(𝑠 / 2)))
378377oveq2d 7161 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠 → (2 · (sin‘(𝑡 / 2))) = (2 · (sin‘(𝑠 / 2))))
379368, 378oveq12d 7163 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (𝑡 / (2 · (sin‘(𝑡 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
380379adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∧ 𝑡 = 𝑠) → (𝑡 / (2 · (sin‘(𝑡 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
381 ovex 7178 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V
382381a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V)
383375, 380, 371, 382fvmptd 6768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
384374, 383oveq12d 7163 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
385384eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
386385adantllr 715 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
387361, 363, 3863eqtrd 2860 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑂𝑠) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
388387mpteq2dva 5153 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑂𝑠)) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))))
389342, 388eqtr2d 2857 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))) = (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
390389oveq2d 7161 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))) = (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
39144a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ℝ ⊆ ℂ)
392341, 309sstrd 3976 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ℝ)
39322tgioo2 23340 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
39422, 393dvres 24438 . . . . . . . . . . . . . . . . . 18 (((ℝ ⊆ ℂ ∧ 𝑂:(-π[,]𝑑)⟶ℂ) ∧ ((-π[,]𝑑) ⊆ ℝ ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ℝ)) → (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
395391, 303, 309, 392, 394syl22anc 834 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
396 ioontr 41667 . . . . . . . . . . . . . . . . . . 19 ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))
397396a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
398397reseq2d 5847 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
399390, 395, 3983eqtrrd 2861 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))))
40015ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ)
40116ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ)
402265ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
403267ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑉 ∈ (𝑃𝑀))
404 fourierdlem103.fdvcn . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
405404ad4ant14 748 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
40662adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (-π[,]𝑑) ⊆ (-π[,]π))
407341, 406sstrd 3976 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]π))
408312rexrd 10680 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ ℝ*)
40953a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 ∈ ℝ*)
410 0red 10633 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 ∈ ℝ)
41155ad2antlr 723 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 < 0)
412322, 315, 410, 334, 411lelttrd 10787 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) < 0)
413408, 322, 409, 412gtnelicc 41655 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))))
41439ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑊 ∈ ℝ)
41511a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ)
416106ad2antlr 723 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π < 𝑑)
417 simpr 485 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0..^𝑁))
418 biid 262 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑣 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑣)(,)(𝑄‘(𝑣 + 1)))) ↔ ((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑣 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑣)(,)(𝑄‘(𝑣 + 1)))))
419401, 264, 402, 403, 415, 315, 416, 406, 80, 73, 68, 127, 417, 289, 418fourierdlem50 42322 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) ∈ (0..^𝑀) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)))))
420419simpld 495 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) ∈ (0..^𝑀))
421419simprd 496 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))))
422369cbvmptv 5161 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡)) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
423379cbvmptv 5161 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
424 eqid 2821 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
425400, 401, 264, 402, 403, 405, 312, 322, 176, 407, 413, 414, 80, 420, 421, 422, 423, 424fourierdlem72 42344 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
426399, 425eqeltrd 2913 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
427 eqid 2821 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
428 eqid 2821 . . . . . . . . . . . . . . . . 17 ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) = ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))
429 fourierdlem103.1 . . . . . . . . . . . . . . . . . . . 20 𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
430429, 420eqeltrid 2917 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ (0..^𝑀))
431 simpll 763 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝜑)
432431, 430jca 512 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝜑𝐶 ∈ (0..^𝑀)))
433 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (𝑖 ∈ (0..^𝑀) ↔ 𝐶 ∈ (0..^𝑀)))
434433anbi2d 628 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝐶 ∈ (0..^𝑀))))
435 fveq2 6664 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → (𝑉𝑖) = (𝑉𝐶))
436 oveq1 7152 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝐶 → (𝑖 + 1) = (𝐶 + 1))
437436fveq2d 6668 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → (𝑉‘(𝑖 + 1)) = (𝑉‘(𝐶 + 1)))
438435, 437oveq12d 7163 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝐶 → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
439 raleq 3406 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
440438, 439syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
441440rexbidv 3297 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → (∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
442434, 441imbi12d 346 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)))
443 fourierdlem103.fbdioo . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
444442, 443vtoclg 3568 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
445430, 432, 444sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
446 nfv 1906 . . . . . . . . . . . . . . . . . . . . . 22 𝑡((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁))
447 nfra1 3219 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤
448446, 447nfan 1891 . . . . . . . . . . . . . . . . . . . . 21 𝑡(((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
449 simplr 765 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
45011a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → -π ∈ ℝ)
451450, 16readdcld 10659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (-π + 𝑋) ∈ ℝ)
45210a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → π ∈ ℝ)
453452, 16readdcld 10659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (π + 𝑋) ∈ ℝ)
454451, 453iccssred 41660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
455 ressxr 10674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ℝ ⊆ ℝ*
456454, 455sstrdi 3978 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ*)
457456ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ*)
458264, 402, 403fourierdlem15 42288 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)))
459 elfzofz 13043 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐶 ∈ (0..^𝑀) → 𝐶 ∈ (0...𝑀))
460430, 459syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ (0...𝑀))
461458, 460ffvelrnd 6845 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ((-π + 𝑋)[,](π + 𝑋)))
462457, 461sseldd 3967 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ℝ*)
463462adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) ∈ ℝ*)
464 fzofzp1 13124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐶 ∈ (0..^𝑀) → (𝐶 + 1) ∈ (0...𝑀))
465430, 464syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐶 + 1) ∈ (0...𝑀))
466458, 465ffvelrnd 6845 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ((-π + 𝑋)[,](π + 𝑋)))
467457, 466sseldd 3967 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ℝ*)
468467adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉‘(𝐶 + 1)) ∈ ℝ*)
469 elioore 12758 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → 𝑡 ∈ ℝ)
470469adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ℝ)
47110a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → π ∈ ℝ)
472415, 471, 401, 264, 402, 403, 460, 80fourierdlem13 42286 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄𝐶) = ((𝑉𝐶) − 𝑋) ∧ (𝑉𝐶) = (𝑋 + (𝑄𝐶))))
473472simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) = (𝑋 + (𝑄𝐶)))
474473adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) = (𝑋 + (𝑄𝐶)))
475454ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
476475, 461sseldd 3967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ℝ)
477476adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) ∈ ℝ)
478474, 477eqeltrrd 2914 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) ∈ ℝ)
479401, 312readdcld 10659 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽𝑘)) ∈ ℝ)
480479adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) ∈ ℝ)
481472simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) = ((𝑉𝐶) − 𝑋))
482476, 401resubcld 11057 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑉𝐶) − 𝑋) ∈ ℝ)
483481, 482eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) ∈ ℝ)
484415, 471, 401, 264, 402, 403, 465, 80fourierdlem13 42286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄‘(𝐶 + 1)) = ((𝑉‘(𝐶 + 1)) − 𝑋) ∧ (𝑉‘(𝐶 + 1)) = (𝑋 + (𝑄‘(𝐶 + 1)))))
485484simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘(𝐶 + 1)) = ((𝑉‘(𝐶 + 1)) − 𝑋))
486475, 466sseldd 3967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ℝ)
487486, 401resubcld 11057 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑉‘(𝐶 + 1)) − 𝑋) ∈ ℝ)
488485, 487eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘(𝐶 + 1)) ∈ ℝ)
489429eqcomi 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) = 𝐶
490489fveq2i 6667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))) = (𝑄𝐶)
491489oveq1i 7155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1) = (𝐶 + 1)
492491fveq2i 6667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)) = (𝑄‘(𝐶 + 1))
493490, 492oveq12i 7157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))) = ((𝑄𝐶)(,)(𝑄‘(𝐶 + 1)))
494421, 493sseqtrdi 4016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝐶)(,)(𝑄‘(𝐶 + 1))))
495483, 488, 312, 322, 176, 494fourierdlem10 42283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄𝐶) ≤ (𝐽𝑘) ∧ (𝐽‘(𝑘 + 1)) ≤ (𝑄‘(𝐶 + 1))))
496495simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) ≤ (𝐽𝑘))
497483, 312, 401, 496leadd2dd 11244 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄𝐶)) ≤ (𝑋 + (𝐽𝑘)))
498497adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) ≤ (𝑋 + (𝐽𝑘)))
499480rexrd 10680 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) ∈ ℝ*)
500401, 322readdcld 10659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ)
501500rexrd 10680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*)
502501adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*)
503 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))
504 ioogtlb 41650 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 + (𝐽𝑘)) ∈ ℝ* ∧ (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) < 𝑡)
505499, 502, 503, 504syl3anc 1363 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) < 𝑡)
506478, 480, 470, 498, 505lelttrd 10787 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) < 𝑡)
507474, 506eqbrtrd 5080 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) < 𝑡)
508500adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ)
509484simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) = (𝑋 + (𝑄‘(𝐶 + 1))))
510509, 486eqeltrrd 2914 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄‘(𝐶 + 1))) ∈ ℝ)
511510adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄‘(𝐶 + 1))) ∈ ℝ)
512 iooltub 41666 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 + (𝐽𝑘)) ∈ ℝ* ∧ (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝐽‘(𝑘 + 1))))
513499, 502, 503, 512syl3anc 1363 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝐽‘(𝑘 + 1))))
514495simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ≤ (𝑄‘(𝐶 + 1)))
515322, 488, 401, 514leadd2dd 11244 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ≤ (𝑋 + (𝑄‘(𝐶 + 1))))
516515adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ≤ (𝑋 + (𝑄‘(𝐶 + 1))))
517470, 508, 511, 513, 516ltletrd 10789 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝑄‘(𝐶 + 1))))
518509eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄‘(𝐶 + 1))) = (𝑉‘(𝐶 + 1)))
519518adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄‘(𝐶 + 1))) = (𝑉‘(𝐶 + 1)))
520517, 519breqtrd 5084 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑉‘(𝐶 + 1)))
521463, 468, 470, 507, 520eliood 41653 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
522521adantlr 711 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
523 rspa 3206 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
524449, 522, 523syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
525524ex 413 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) → (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤))
526448, 525ralrimi 3216 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
527526ex 413 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
528527reximdv 3273 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
529445, 528mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
530438raleqdv 3416 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
531530rexbidv 3297 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
532434, 531imbi12d 346 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)))
533 fourierdlem103.fdvbd . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
534532, 533vtoclg 3568 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
535430, 432, 534sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
536 nfra1 3219 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
537446, 536nfan 1891 . . . . . . . . . . . . . . . . . . . . 21 𝑡(((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
53815, 45fssd 6522 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐹:ℝ⟶ℂ)
539 ssid 3988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ℝ ⊆ ℝ
540539a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ℝ ⊆ ℝ)
541 ioossre 12788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ
542541a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)
54322, 393dvres 24438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
54445, 538, 540, 542, 543syl22anc 834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
545 ioontr 41667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))
546545reseq2i 5844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))
547546a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
548544, 547eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
549548fveq1d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))‘𝑡))
550 fvres 6683 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
551549, 550sylan9eq 2876 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
552551ad4ant14 748 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
553552fveq2d 6668 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
554553adantlr 711 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
555 simplr 765 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
556521adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
557 rspa 3206 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
558555, 556, 557syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
559554, 558eqbrtrd 5080 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
560559ex 413 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
561537, 560ralrimi 3216 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
562561ex 413 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
563562reximdv 3273 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
564535, 563mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
565415rexrd 10680 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ*)
566565, 316, 310, 417fourierdlem8 42281 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ⊆ (-π[,]𝑑))
567126ad2antrr 722 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝑁 ∈ ℕ)
568152, 308fssd 6522 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐽:(0...𝑁)⟶ℝ)
569568ad2antrr 722 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝐽:(0...𝑁)⟶ℝ)
570 simpr 485 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) → 𝑟 ∈ (-π[,]𝑑))
571153eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → -π = (𝐽‘0))
572154eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 = (𝐽𝑁))
573571, 572oveq12d 7163 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (-π[,]𝑑) = ((𝐽‘0)[,](𝐽𝑁)))
574573adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) → (-π[,]𝑑) = ((𝐽‘0)[,](𝐽𝑁)))
575570, 574eleqtrd 2915 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) → 𝑟 ∈ ((𝐽‘0)[,](𝐽𝑁)))
576575adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝑟 ∈ ((𝐽‘0)[,](𝐽𝑁)))
577 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → ¬ 𝑟 ∈ ran 𝐽)
578 fveq2 6664 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → (𝐽𝑗) = (𝐽𝑘))
579578breq1d 5068 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑘 → ((𝐽𝑗) < 𝑟 ↔ (𝐽𝑘) < 𝑟))
580579cbvrabv 3492 . . . . . . . . . . . . . . . . . . 19 {𝑗 ∈ (0..^𝑁) ∣ (𝐽𝑗) < 𝑟} = {𝑘 ∈ (0..^𝑁) ∣ (𝐽𝑘) < 𝑟}
581580supeq1i 8900 . . . . . . . . . . . . . . . . . 18 sup({𝑗 ∈ (0..^𝑁) ∣ (𝐽𝑗) < 𝑟}, ℝ, < ) = sup({𝑘 ∈ (0..^𝑁) ∣ (𝐽𝑘) < 𝑟}, ℝ, < )
582567, 569, 576, 577, 581fourierdlem25 42298 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → ∃𝑚 ∈ (0..^𝑁)𝑟 ∈ ((𝐽𝑚)(,)(𝐽‘(𝑚 + 1))))
583546a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
584538ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
585539a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ℝ ⊆ ℝ)
586541a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)
587391, 584, 585, 586, 543syl22anc 834 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
588521ralrimiva 3182 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
589 dfss3 3955 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
590588, 589sylibr 235 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
591590resabs1d 5878 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
592583, 587, 5913eqtr4rd 2867 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
593 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐶 ∈ (0..^𝑀)) → 𝐶 ∈ (0..^𝑀))
594 id 22 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐶 ∈ (0..^𝑀)) → (𝜑𝐶 ∈ (0..^𝑀)))
595438reseq2d 5847 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))))
596595, 438feq12d 6496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝐶 → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ ↔ ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ))
597434, 596imbi12d 346 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)))
598 cncff 23430 . . . . . . . . . . . . . . . . . . . . . . 23 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
599404, 598syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
600597, 599vtoclg 3568 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ))
601593, 594, 600sylc 65 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)
602432, 601syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)
603602, 590fssresd 6539 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))):((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))⟶ℝ)
604592, 603feq1dd 41303 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))):((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))⟶ℝ)
605367, 378oveq12d 7163 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / (2 · (sin‘(𝑡 / 2)))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
606605cbvmptv 5161 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / (2 · (sin‘(𝑡 / 2))))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
607 biid 262 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ↔ ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ))
608 fveq2 6664 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 𝑡 → (𝐹𝑟) = (𝐹𝑡))
609608fveq2d 6668 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑡 → (abs‘(𝐹𝑟)) = (abs‘(𝐹𝑡)))
610609breq1d 5068 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑡 → ((abs‘(𝐹𝑟)) ≤ 𝑤 ↔ (abs‘(𝐹𝑡)) ≤ 𝑤))
611610cbvralv 3453 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
612607, 611anbi12i 626 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤) ↔ (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
613 fveq2 6664 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑡 → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟) = ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡))
614613fveq2d 6668 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑡 → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)))
615614breq1d 5068 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑡 → ((abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧 ↔ (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
616615cbvralv 3453 . . . . . . . . . . . . . . . . . 18 (∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧 ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
617612, 616anbi12i 626 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧) ↔ ((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
618262, 263, 12, 14, 62, 279, 280, 427, 428, 529, 564, 152, 176, 566, 582, 604, 606, 617fourierdlem80 42352 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
619358mpteq2dva 5153 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
620259, 619eqtrd 2856 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂 = (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
621620oveq2d 7161 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (ℝ D 𝑂) = (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))))
622621dmeqd 5768 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → dom (ℝ D 𝑂) = dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))))
623 nfcv 2977 . . . . . . . . . . . . . . . . . . . 20 𝑠dom (ℝ D 𝑂)
624 nfcv 2977 . . . . . . . . . . . . . . . . . . . . . 22 𝑠
625 nfcv 2977 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 D
626 nfmpt1 5156 . . . . . . . . . . . . . . . . . . . . . 22 𝑠(𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
627624, 625, 626nfov 7175 . . . . . . . . . . . . . . . . . . . . 21 𝑠(ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
628627nfdm 5817 . . . . . . . . . . . . . . . . . . . 20 𝑠dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
629623, 628raleqf 3398 . . . . . . . . . . . . . . . . . . 19 (dom (ℝ D 𝑂) = dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
630622, 629syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
631621fveq1d 6666 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → ((ℝ D 𝑂)‘𝑠) = ((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠))
632631fveq2d 6668 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)))
633632breq1d 5068 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ (abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
634633ralbidv 3197 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → (∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
635630, 634bitrd 280 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
636635rexbidv 3297 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
637618, 636mpbird 258 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
638 eqid 2821 . . . . . . . . . . . . . . 15 (𝑙 ∈ ℝ+ ↦ ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (𝑙 ∈ ℝ+ ↦ ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
639 eqeq1 2825 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (𝑡 = (𝐽𝑘) ↔ 𝑠 = (𝐽𝑘)))
640 fveq2 6664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑙 → (𝑄) = (𝑄𝑙))
641 oveq1 7152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ( = 𝑙 → ( + 1) = (𝑙 + 1))
642641fveq2d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑙 → (𝑄‘( + 1)) = (𝑄‘(𝑙 + 1)))
643640, 642oveq12d 7163 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ( = 𝑙 → ((𝑄)(,)(𝑄‘( + 1))) = ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
644643sseq2d 3998 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ( = 𝑙 → (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))) ↔ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))
645644cbvriotav 7117 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
646645fveq2i 6667 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))
647646eqeq2i 2834 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) ↔ (𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))))
648647a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) ↔ (𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))))
649 csbeq1 3885 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅)
650645, 649ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅
651650a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅)
652648, 651ifbieq1d 4488 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) = if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))))
653652mptru 1535 . . . . . . . . . . . . . . . . . . . . 21 if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) = if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘))))
654653oveq1i 7155 . . . . . . . . . . . . . . . . . . . 20 (if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) = (if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊)
655654oveq1i 7155 . . . . . . . . . . . . . . . . . . 19 ((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) = ((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘))
656655oveq1i 7155 . . . . . . . . . . . . . . . . . 18 (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2)))))
657656a1i 11 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))))
658 eqeq1 2825 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝑡 = (𝐽‘(𝑘 + 1)) ↔ 𝑠 = (𝐽‘(𝑘 + 1))))
659645oveq1i 7155 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1) = ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)
660659fveq2i 6667 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))
661660eqeq2i 2834 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) ↔ (𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)))
662661a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) ↔ (𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))))
663 csbeq1 3885 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿)
664645, 663ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿
665664a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿)
666662, 665ifbieq1d 4488 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) = if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))))
667666mptru 1535 . . . . . . . . . . . . . . . . . . . . . 22 if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) = if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1)))))
668667oveq1i 7155 . . . . . . . . . . . . . . . . . . . . 21 (if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) = (if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊)
669668oveq1i 7155 . . . . . . . . . . . . . . . . . . . 20 ((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) = ((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1)))
670669oveq1i 7155 . . . . . . . . . . . . . . . . . . 19 (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2)))))
671670a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))))
672 fveq2 6664 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝑂𝑡) = (𝑂𝑠))
673658, 671, 672ifbieq12d 4492 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡)) = if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠)))
674639, 657, 673ifbieq12d 4492 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → if(𝑡 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡))) = if(𝑠 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠))))
675674cbvmptv 5161 . . . . . . . . . . . . . . 15 (𝑡 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ↦ if(𝑡 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡)))) = (𝑠 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ↦ if(𝑠 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠))))
67612, 14, 67, 126, 152, 153, 154, 176, 292, 298, 301, 302, 426, 637, 638, 675fourierdlem73 42345 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (-π(,)0)) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒)
677 breq2 5062 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑎 → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎))
678677rexralbidv 3301 . . . . . . . . . . . . . . 15 (𝑒 = 𝑎 → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎))
679678cbvralv 3453 . . . . . . . . . . . . . 14 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
680676, 679sylib 219 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ (-π(,)0)) → ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
681680adantlr 711 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
682 rphalfcl 12406 . . . . . . . . . . . . 13 (𝑒 ∈ ℝ+ → (𝑒 / 2) ∈ ℝ+)
683682ad2antlr 723 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → (𝑒 / 2) ∈ ℝ+)
684 breq2 5062 . . . . . . . . . . . . . 14 (𝑎 = (𝑒 / 2) → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ↔ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
685684rexralbidv 3301 . . . . . . . . . . . . 13 (𝑎 = (𝑒 / 2) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ↔ ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
686685rspccva 3621 . . . . . . . . . . . 12 ((∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ∧ (𝑒 / 2) ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
687681, 683, 686syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
688345a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → (𝑂𝑠) = ((𝑈 ↾ (-π[,]𝑑))‘𝑠))
689140a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → (-π(,)𝑑) ⊆ (-π[,]𝑑))
690689sselda 3966 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → 𝑠 ∈ (-π[,]𝑑))
691690, 347syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → ((𝑈 ↾ (-π[,]𝑑))‘𝑠) = (𝑈𝑠))
692688, 691eqtr2d 2857 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → (𝑈𝑠) = (𝑂𝑠))
693692oveq1d 7160 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑂𝑠) · (sin‘(𝑙 · 𝑠))))
694693itgeq2dv 24311 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
695694adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
696695fveq2d 6668 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠))
697 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
698696, 697eqbrtrd 5080 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
699698ex 413 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (-π(,)0)) → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
700699adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
701700ralimdv 3178 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
702701reximdv 3273 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
703687, 702mpd 15 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
704703adantr 481 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
705 nfv 1906 . . . . . . . . . . . . . . 15 𝑘((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0))
706 nfra1 3219 . . . . . . . . . . . . . . 15 𝑘𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)
707705, 706nfan 1891 . . . . . . . . . . . . . 14 𝑘(((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
708 nfv 1906 . . . . . . . . . . . . . 14 𝑘 𝑗 ∈ ℕ
709707, 708nfan 1891 . . . . . . . . . . . . 13 𝑘((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ)
710 nfv 1906 . . . . . . . . . . . . 13 𝑘𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)
711709, 710nfan 1891 . . . . . . . . . . . 12 𝑘(((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
712 simpll 763 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)))
713 eluznn 12307 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
714713adantll 710 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
715712, 714jca 512 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ))
716715adantllr 715 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ))
717 simpllr 772 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
718713adantll 710 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
719 rspa 3206 . . . . . . . . . . . . . . . . . . 19 ((∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ∧ 𝑘 ∈ ℕ) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
720717, 718, 719syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
721716, 720jca 512 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
722721adantlr 711 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
723 nnre 11634 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
724723rexrd 10680 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ*)
725724adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ*)
72623a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → +∞ ∈ ℝ*)
727 eluzelre 12243 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℝ)
728 1re 10630 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℝ
729728rehalfcli 11875 . . . . . . . . . . . . . . . . . . . . . . 23 (1 / 2) ∈ ℝ
730729a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (ℤ𝑗) → (1 / 2) ∈ ℝ)
731727, 730readdcld 10659 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑗) → (𝑘 + (1 / 2)) ∈ ℝ)
732731adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ ℝ)
733723adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ)
734727adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ)
735 eluzle 12245 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (ℤ𝑗) → 𝑗𝑘)
736735adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗𝑘)
737 halfgt0 11842 . . . . . . . . . . . . . . . . . . . . . . 23 0 < (1 / 2)
738737a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 0 < (1 / 2))
739729a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (1 / 2) ∈ ℝ)
740739, 734ltaddposd 11213 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (0 < (1 / 2) ↔ 𝑘 < (𝑘 + (1 / 2))))
741738, 740mpbid 233 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 < (𝑘 + (1 / 2)))
742733, 734, 732, 736, 741lelttrd 10787 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 < (𝑘 + (1 / 2)))
743732ltpnfd 12506 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) < +∞)
744725, 726, 732, 742, 743eliood 41653 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ (𝑗(,)+∞))
745744adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ (𝑗(,)+∞))
746 simplr 765 . . . . . . . . . . . . . . . . . 18 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
747 oveq1 7152 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑙 = (𝑘 + (1 / 2)) → (𝑙 · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
748747fveq2d 6668 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 = (𝑘 + (1 / 2)) → (sin‘(𝑙 · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
749748oveq2d 7161 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = (𝑘 + (1 / 2)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
750749adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑙 = (𝑘 + (1 / 2)) ∧ 𝑠 ∈ (-π(,)𝑑)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
751750itgeq2dv 24311 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = (𝑘 + (1 / 2)) → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
752751fveq2d 6668 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = (𝑘 + (1 / 2)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
753752breq1d 5068 . . . . . . . . . . . . . . . . . . 19 (𝑙 = (𝑘 + (1 / 2)) → ((abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
754753rspcv 3617 . . . . . . . . . . . . . . . . . 18 ((𝑘 + (1 / 2)) ∈ (𝑗(,)+∞) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
755745, 746, 754sylc 65 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
756755adantlll 714 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
757722, 756jca 512 . . . . . . . . . . . . . . 15 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
758 fourierdlem103.ch . . . . . . . . . . . . . . 15 (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
759757, 758sylibr 235 . . . . . . . . . . . . . 14 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜒)
76011a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → -π ∈ ℝ)
761 0red 10633 . . . . . . . . . . . . . . . . . 18 (𝜒 → 0 ∈ ℝ)
762 ioossicc 12812 . . . . . . . . . . . . . . . . . . 19 (-π(,)0) ⊆ (-π[,]0)
763758biimpi 217 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
764 simp-4r 780 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑑 ∈ (-π(,)0))
765763, 764syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑑 ∈ (-π(,)0))
766762, 765sseldi 3964 . . . . . . . . . . . . . . . . . 18 (𝜒𝑑 ∈ (-π[,]0))
767 simp-5l 781 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝜑)
768763, 767syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝜑)
76943adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑈:(-π[,]π)⟶ℝ)
77010rexri 10688 . . . . . . . . . . . . . . . . . . . . . . . . . 26 π ∈ ℝ*
771 0re 10632 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℝ
772771, 10, 56ltleii 10752 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ≤ π
773 iooss2 12764 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π ∈ ℝ* ∧ 0 ≤ π) → (-π(,)0) ⊆ (-π(,)π))
774770, 772, 773mp2an 688 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-π(,)0) ⊆ (-π(,)π)
775 ioossicc 12812 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-π(,)π) ⊆ (-π[,]π)
776774, 775sstri 3975 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π(,)0) ⊆ (-π[,]π)
777776sseli 3962 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ (-π[,]π))
778777adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
779769, 778ffvelrnd 6845 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
780768, 779sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
781 simpllr 772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑘 ∈ ℕ)
782763, 781syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑘 ∈ ℕ)
783782nnred 11642 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑘 ∈ ℝ)
784729a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (1 / 2) ∈ ℝ)
785783, 784readdcld 10659 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑘 + (1 / 2)) ∈ ℝ)
786785adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑠 ∈ (-π(,)0)) → (𝑘 + (1 / 2)) ∈ ℝ)
787 elioore 12758 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ ℝ)
788787adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
789786, 788remulcld 10660 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ (-π(,)0)) → ((𝑘 + (1 / 2)) · 𝑠) ∈ ℝ)
790789resincld 15486 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (-π(,)0)) → (sin‘((𝑘 + (1 / 2)) · 𝑠)) ∈ ℝ)
791780, 790remulcld 10660 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
792791recnd 10658 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℂ)
79352a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → -π ∈ ℝ*)
79453a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → 0 ∈ ℝ*)
795760leidd 11195 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → -π ≤ -π)
796 ioossre 12788 . . . . . . . . . . . . . . . . . . . . . 22 (-π(,)0) ⊆ ℝ
797796, 765sseldi 3964 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑑 ∈ ℝ)
798793, 794, 765, 54syl3anc 1363 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑑 < 0)
799797, 761, 798ltled 10777 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑑 ≤ 0)
800 ioossioo 12819 . . . . . . . . . . . . . . . . . . . 20 (((-π ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (-π ≤ -π ∧ 𝑑 ≤ 0)) → (-π(,)𝑑) ⊆ (-π(,)0))
801793, 794, 795, 799, 800syl22anc 834 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (-π(,)𝑑) ⊆ (-π(,)0))
802 ioombl 24095 . . . . . . . . . . . . . . . . . . . 20 (-π(,)𝑑) ∈ dom vol
803802a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (-π(,)𝑑) ∈ dom vol)
804 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → (𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ))
805804anbi2d 628 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
806 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → 𝑛 = 𝑘)
807806oveq1d 7160 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
808807oveq1d 7160 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
809808fveq2d 6668 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
810809oveq2d 7161 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
811810mpteq2dva 5153 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))))
812811eleq1d 2897 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → ((𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1 ↔ (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1))
813805, 812imbi12d 346 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1) ↔ ((𝜑𝑘 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)))
814776a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (-π(,)0) ⊆ (-π[,]π))
815 ioombl 24095 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)0) ∈ dom vol
816815a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (-π(,)0) ∈ dom vol)
81743ffvelrnda 6844 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
818817adantlr 711 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
819 nnre 11634 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
820 readdcl 10609 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑛 + (1 / 2)) ∈ ℝ)
821819, 729, 820sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ ℕ → (𝑛 + (1 / 2)) ∈ ℝ)
822821adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑛 + (1 / 2)) ∈ ℝ)
823 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
824214, 823sseldi 3964 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
825822, 824remulcld 10660 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
826825resincld 15486 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
827826adantll 710 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
828818, 827remulcld 10660 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
829 fourierdlem103.g . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
830829a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))))
831 fourierdlem103.s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
832831fvmpt2 6772 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
833823, 826, 832syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
834833adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
835834oveq2d 7161 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
836835mpteq2dva 5153 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))))
837830, 836eqtr2d 2857 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = 𝐺)
83815adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
839 fourierdlem103.x . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑋 ∈ ran 𝑉)
840839adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ran 𝑉)
84127adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
84238adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
843819adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
844265adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℕ)
845267adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑉 ∈ (𝑃𝑀))
846269adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
847271adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
848273adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
849 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
850 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℝ D 𝐹) = (ℝ D 𝐹)
851599adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
852 fourierdlem103.a . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
853852adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
854 fourierdlem103.b . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
855854adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
856264, 838, 840, 841, 842, 40, 41, 42, 843, 831, 829, 844, 845, 846, 847, 848, 80, 849, 850, 851, 853, 855fourierdlem88 42360 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
857837, 856eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
858814, 816, 828, 857iblss 24334 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
859813, 858chvarv 2408 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
860768, 782, 859syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
861801, 803, 791, 860iblss 24334 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑠 ∈ (-π(,)𝑑) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
862765, 106syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → -π < 𝑑)
863760, 797, 862ltled 10777 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → -π ≤ 𝑑)
864761leidd 11195 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → 0 ≤ 0)
865 ioossioo 12819 . . . . . . . . . . . . . . . . . . . 20 (((-π ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (-π ≤ 𝑑 ∧ 0 ≤ 0)) → (𝑑(,)0) ⊆ (-π(,)0))
866793, 794, 863, 864, 865syl22anc 834 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑑(,)0) ⊆ (-π(,)0))
867 ioombl 24095 . . . . . . . . . . . . . . . . . . . 20 (𝑑(,)0) ∈ dom vol
868867a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑑(,)0) ∈ dom vol)
869866, 868, 791, 860iblss 24334 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑠 ∈ (𝑑(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
870760, 761, 766, 792, 861, 869itgsplitioo 24367 . . . . . . . . . . . . . . . . 17 (𝜒 → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = (∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
871801sselda 3966 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (-π(,)𝑑)) → 𝑠 ∈ (-π(,)0))
872871, 791syldan 591 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (-π(,)𝑑)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
873872, 861itgcl 24313 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
874866sselda 3966 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (𝑑(,)0)) → 𝑠 ∈ (-π(,)0))
875874, 791syldan 591 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (𝑑(,)0)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
876875, 869itgcl 24313 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
877873, 876addcomd 10831 . . . . . . . . . . . . . . . . 17 (𝜒 → (∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
878870, 877eqtrd 2856 . . . . . . . . . . . . . . . 16 (𝜒 → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = (∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
879878fveq2d 6668 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)))
880876, 873addcld 10649 . . . . . . . . . . . . . . . . 17 (𝜒 → (∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℂ)
881880abscld 14786 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ∈ ℝ)
882876abscld 14786 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℝ)
883873abscld 14786 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℝ)
884882, 883readdcld 10659 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ∈ ℝ)
885 simp-5r 782 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑒 ∈ ℝ+)
886763, 885syl 17 . . . . . . . . . . . . . . . . 17 (𝜒𝑒 ∈ ℝ+)
887886rpred 12421 . . . . . . . . . . . . . . . 16 (𝜒𝑒 ∈ ℝ)
888876, 873abstrid 14806 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ≤ ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)))
889 simplr 765 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
890763, 889syl 17 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
891763simprd 496 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
892882, 883, 887, 890, 891lt2halvesd 11874 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) < 𝑒)
893881, 884, 887, 888, 892lelttrd 10787 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) < 𝑒)
894879, 893eqbrtrd 5080 . . . . . . . . . . . . . 14 (𝜒 → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
895759, 894syl 17 . . . . . . . . . . . . 13 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
896895ex 413 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (𝑘 ∈ (ℤ𝑗) → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
897711, 896ralrimi 3216 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
898897ex 413 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
899898reximdva 3274 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
900704, 899mpd 15 . . . . . . . 8 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
901 negpilt0 41426 . . . . . . . . . . . . . 14 -π < 0
90211, 771, 10lttri 10755 . . . . . . . . . . . . . 14 ((-π < 0 ∧ 0 < π) → -π < π)
903901, 56, 902mp2an 688 . . . . . . . . . . . . 13 -π < π
90411, 10, 903ltleii 10752 . . . . . . . . . . . 12 -π ≤ π
905904a1i 11 . . . . . . . . . . 11 (𝜑 → -π ≤ π)
906264fourierdlem2 42275 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
907265, 906syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
908267, 907mpbid 233 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
909908simpld 495 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
910 elmapi 8418 . . . . . . . . . . . . . . 15 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
911909, 910syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉:(0...𝑀)⟶ℝ)
912911ffvelrnda 6844 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑉𝑖) ∈ ℝ)
91316adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ)
914912, 913resubcld 11057 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
915914, 80fmptd 6871 . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
91680a1i 11 . . . . . . . . . . . . 13 (𝜑𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)))
917 fveq2 6664 . . . . . . . . . . . . . . 15 (𝑖 = 0 → (𝑉𝑖) = (𝑉‘0))
918917oveq1d 7160 . . . . . . . . . . . . . 14 (𝑖 = 0 → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
919918adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 = 0) → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
920265nnnn0d 11944 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ0)
921 nn0uz 12269 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
922920, 921eleqtrdi 2923 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘0))
923 eluzfz1 12904 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
924922, 923syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑀))
925911, 924ffvelrnd 6845 . . . . . . . . . . . . . 14 (𝜑 → (𝑉‘0) ∈ ℝ)
926925, 16resubcld 11057 . . . . . . . . . . . . 13 (𝜑 → ((𝑉‘0) − 𝑋) ∈ ℝ)
927916, 919, 924, 926fvmptd 6768 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) = ((𝑉‘0) − 𝑋))
928908simprd 496 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))
929928simpld 495 . . . . . . . . . . . . . 14 (𝜑 → ((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)))
930929simpld 495 . . . . . . . . . . . . 13 (𝜑 → (𝑉‘0) = (-π + 𝑋))
931930oveq1d 7160 . . . . . . . . . . . 12 (𝜑 → ((𝑉‘0) − 𝑋) = ((-π + 𝑋) − 𝑋))
932450recnd 10658 . . . . . . . . . . . . 13 (𝜑 → -π ∈ ℂ)
93316recnd 10658 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℂ)
934932, 933pncand 10987 . . . . . . . . . . . 12 (𝜑 → ((-π + 𝑋) − 𝑋) = -π)
935927, 931, 9343eqtrd 2860 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) = -π)
936450, 452, 16, 264, 849, 265, 267, 80fourierdlem14 42287 . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀))
937849fourierdlem2 42275 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
938265, 937syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
939936, 938mpbid 233 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
940939simprd 496 . . . . . . . . . . . . 13 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
941940simpld 495 . . . . . . . . . . . 12 (𝜑 → ((𝑄‘0) = -π ∧ (𝑄𝑀) = π))
942941simprd 496 . . . . . . . . . . 11 (𝜑 → (𝑄𝑀) = π)
943940simprd 496 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
944943r19.21bi 3208 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
94515adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ)
946849, 265, 936fourierdlem15 42288 . . . . . . . . . . . . . 14 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
947946adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
948 elfzofz 13043 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
949948adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
950947, 949ffvelrnd 6845 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (-π[,]π))
951 fzofzp1 13124 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
952951adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
953947, 952ffvelrnd 6845 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (-π[,]π))
95416adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
955 ffn 6508 . . . . . . . . . . . . . . . . . 18 (𝑉:(0...𝑀)⟶ℝ → 𝑉 Fn (0...𝑀))
956909, 910, 9553syl 18 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 Fn (0...𝑀))
957 fvelrnb 6720 . . . . . . . . . . . . . . . . 17 (𝑉 Fn (0...𝑀) → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
958956, 957syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
959839, 958mpbid 233 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋)
960 oveq1 7152 . . . . . . . . . . . . . . . . . . 19 ((𝑉𝑖) = 𝑋 → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
961960adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
962933subidd 10974 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋𝑋) = 0)
963962ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → (𝑋𝑋) = 0)
964961, 963eqtr2d 2857 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → 0 = ((𝑉𝑖) − 𝑋))
965964ex 413 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) = 𝑋 → 0 = ((𝑉𝑖) − 𝑋)))
966965reximdva 3274 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋 → ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋)))
967959, 966mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋))
96880elrnmpt 5822 . . . . . . . . . . . . . . 15 (0 ∈ ℝ → (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋)))
969771, 968ax-mp 5 . . . . . . . . . . . . . 14 (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋))
970967, 969sylibr 235 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ran 𝑄)
971849, 265, 936, 970fourierdlem12 42285 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 0 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
972911adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
973972, 949ffvelrnd 6845 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
974973, 954resubcld 11057 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
97580fvmpt2 6772 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
976949, 974, 975syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
977976oveq1d 7160 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (((𝑉𝑖) − 𝑋) + 𝑋))
978973recnd 10658 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℂ)
979933adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ)
980978, 979npcand 10990 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉𝑖) − 𝑋) + 𝑋) = (𝑉𝑖))
981977, 980eqtrd 2856 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (𝑉𝑖))
982 fveq2 6664 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑖 → (𝑉𝑗) = (𝑉𝑖))
983982oveq1d 7160 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → ((𝑉𝑗) − 𝑋) = ((𝑉𝑖) − 𝑋))
984983cbvmptv 5161 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
98580, 984eqtr4i 2847 . . . . . . . . . . . . . . . . . . 19 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
986985a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
987 fveq2 6664 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (𝑖 + 1) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
988987oveq1d 7160 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑖 + 1) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
989988adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
990972, 952ffvelrnd 6845 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
991990, 954resubcld 11057 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
992986, 989, 952, 991fvmptd 6768 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
993992oveq1d 7160 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋))
994990recnd 10658 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ)
995994, 979npcand 10990 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋) = (𝑉‘(𝑖 + 1)))
996993, 995eqtrd 2856 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (𝑉‘(𝑖 + 1)))
997981, 996oveq12d 7163 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
998997reseq2d 5847 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) = (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))))
999997oveq1d 7160 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ) = (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
1000269, 998, 9993eltr4d 2928 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) ∈ ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ))
100128adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑌 ∈ ℝ)
100239adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ℝ)
1003945, 950, 953, 954, 971, 1000, 1001, 1002, 40fourierdlem40 42313 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
1004 id 22 . . . . . . . . . . . . . 14 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
100544a1i 11 . . . . . . . . . . . . . 14 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ℝ ⊆ ℂ)
10061004, 1005fssd 6522 . . . . . . . . . . . . 13 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
1007404, 598, 10063syl 18 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
1008 eqid 2821 . . . . . . . . . . . 12 if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) = if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖)))
100916, 264, 15, 839, 27, 39, 40, 265, 267, 271, 80, 849, 850, 1007, 854, 1008fourierdlem75 42347 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
1010 eqid 2821 . . . . . . . . . . . 12 if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) = if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))))
101116, 264, 15, 839, 28, 38, 40, 265, 267, 273, 80, 849, 850, 599, 852, 1010fourierdlem74 42346 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
1012 fveq2 6664 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
1013 oveq1 7152 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1))
10141013fveq2d 6668 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)))
10151012, 1014oveq12d 7163 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
10161015cbvmptv 5161 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) ↦ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
1017450, 452, 905, 180, 265, 915, 935, 942, 944, 1003, 1009, 1011, 1016fourierdlem70 42342 . . . . . . . . . 10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
1018 eqid 2821 . . . . . . . . . 10 ((𝑒 / 3) / 𝑦) = ((𝑒 / 3) / 𝑦)
1019 fveq2 6664 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝐺𝑡) = (𝐺𝑠))
10201019fveq2d 6668 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (abs‘(𝐺𝑡)) = (abs‘(𝐺𝑠)))
10211020breq1d 5068 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → ((abs‘(𝐺𝑡)) ≤ 𝑦 ↔ (abs‘(𝐺𝑠)) ≤ 𝑦))
10221021cbvralv 3453 . . . . . . . . . . . . . . 15 (∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦 ↔ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦)
10231022ralbii 3165 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦 ↔ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦)
102410233anbi3i 1151 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ↔ ((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦))
10251024anbi1i 623 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ↔ (((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol))
10261025anbi1i 623 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ↔ ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))))
10271026anbi1i 623 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ∧ 𝑛 ∈ ℕ) ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ∧ 𝑛 ∈ ℕ))
102815, 16, 28, 39, 40, 41, 42, 831, 829, 1017, 856, 1018, 1027fourierdlem87 42359 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → ∃𝑐 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
1029 iftrue 4471 . . . . . . . . . . . . . . . 16 (𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = 𝑐)
10301029negeqd 10869 . . . . . . . . . . . . . . 15 (𝑐 ≤ (π / 2) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = -𝑐)
10311030adantl 482 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = -𝑐)
103252a1i 11 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π ∈ ℝ*)
103353a1i 11 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ∈ ℝ*)
1034 rpre 12387 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+𝑐 ∈ ℝ)
10351034renegcld 11056 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → -𝑐 ∈ ℝ)
10361035adantr 481 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 ∈ ℝ)
10371034adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ∈ ℝ)
103810rehalfcli 11875 . . . . . . . . . . . . . . . . . 18 (π / 2) ∈ ℝ
10391038a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (π / 2) ∈ ℝ)
104010a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → π ∈ ℝ)
1041 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ≤ (π / 2))
1042 halfpos 11856 . . . . . . . . . . . . . . . . . . . 20 (π ∈ ℝ → (0 < π ↔ (π / 2) < π))
104310, 1042ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (0 < π ↔ (π / 2) < π)
104456, 1043mpbi 231 . . . . . . . . . . . . . . . . . 18 (π / 2) < π
10451044a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (π / 2) < π)
10461037, 1039, 1040, 1041, 1045lelttrd 10787 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 < π)
10471037, 1040ltnegd 11207 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (𝑐 < π ↔ -π < -𝑐))
10481046, 1047mpbid 233 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π < -𝑐)
1049 rpgt0 12391 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → 0 < 𝑐)
10501034lt0neg2d 11199 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (0 < 𝑐 ↔ -𝑐 < 0))
10511049, 1050mpbid 233 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → -𝑐 < 0)
10521051adantr 481 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 < 0)
10531032, 1033, 1036, 1048, 1052eliood 41653 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 ∈ (-π(,)0))
10541031, 1053eqeltrd 2913 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
1055 iffalse 4474 . . . . . . . . . . . . . . . 16 𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = (π / 2))
10561055negeqd 10869 . . . . . . . . . . . . . . 15 𝑐 ≤ (π / 2) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = -(π / 2))
10571038renegcli 10936 . . . . . . . . . . . . . . . . . . 19 -(π / 2) ∈ ℝ
10581057rexri 10688 . . . . . . . . . . . . . . . . . 18 -(π / 2) ∈ ℝ*
105952, 53, 10583pm3.2i 1331 . . . . . . . . . . . . . . . . 17 (-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -(π / 2) ∈ ℝ*)
10601038, 10ltnegi 11173 . . . . . . . . . . . . . . . . . . 19 ((π / 2) < π ↔ -π < -(π / 2))
10611044, 1060mpbi 231 . . . . . . . . . . . . . . . . . 18 -π < -(π / 2)
1062 2pos 11729 . . . . . . . . . . . . . . . . . . . 20 0 < 2
106310, 101, 56, 1062divgt0ii 11546 . . . . . . . . . . . . . . . . . . 19 0 < (π / 2)
1064 lt0neg2 11136 . . . . . . . . . . . . . . . . . . . 20 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
10651038, 1064ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (0 < (π / 2) ↔ -(π / 2) < 0)
10661063, 1065mpbi 231 . . . . . . . . . . . . . . . . . 18 -(π / 2) < 0
10671061, 1066pm3.2i 471 . . . . . . . . . . . . . . . . 17 (-π < -(π / 2) ∧ -(π / 2) < 0)
1068 elioo3g 12757 . . . . . . . . . . . . . . . . 17 (-(π / 2) ∈ (-π(,)0) ↔ ((-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -(π / 2) ∈ ℝ*) ∧ (-π < -(π / 2) ∧ -(π / 2) < 0)))
10691059, 1067, 1068mpbir2an 707 . . . . . . . . . . . . . . . 16 -(π / 2) ∈ (-π(,)0)
10701069a1i 11 . . . . . . . . . . . . . . 15 𝑐 ≤ (π / 2) → -(π / 2) ∈ (-π(,)0))
10711056, 1070eqeltrd 2913 . . . . . . . . . . . . . 14 𝑐 ≤ (π / 2) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
10721071adantl 482 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
10731054, 1072pm2.61dan 809 . . . . . . . . . . . 12 (𝑐 ∈ ℝ+ → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
107410733ad2ant2 1126 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
1075 ioombl 24095 . . . . . . . . . . . . . . 15 (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol
10761075a1i 11 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol)
1077 simpr 485 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10781076, 1077jca 512 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
1079 ioossicc 12812 . . . . . . . . . . . . . . . . 17 (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0)
10801079a1i 11 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0))
108111a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → -π ∈ ℝ)
108210a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → π ∈ ℝ)
10831037, 1040, 1046ltled 10777 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ≤ π)
10841037, 1040lenegd 11208 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (𝑐 ≤ π ↔ -π ≤ -𝑐))
10851083, 1084mpbid 233 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π ≤ -𝑐)
10861030eqcomd 2827 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ≤ (π / 2) → -𝑐 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10871086adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10881085, 1087breqtrd 5084 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
108911, 1057, 1061ltleii 10752 . . . . . . . . . . . . . . . . . . . 20 -π ≤ -(π / 2)
10901089a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -π ≤ -(π / 2))
10911056eqcomd 2827 . . . . . . . . . . . . . . . . . . . 20 𝑐 ≤ (π / 2) → -(π / 2) = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10921091adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -(π / 2) = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10931090, 1092breqtrd 5084 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10941088, 1093pm2.61dan 809 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → -π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1095772a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → 0 ≤ π)
1096 iccss 12794 . . . . . . . . . . . . . . . . 17 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∧ 0 ≤ π)) → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0) ⊆ (-π[,]π))
10971081, 1082, 1094, 1095, 1096syl22anc 834 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0) ⊆ (-π[,]π))
10981080, 1097sstrd 3976 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℝ+ → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π))
1099796, 1073sseldi 3964 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ)
1100 0red 10633 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → 0 ∈ ℝ)
1101 rpge0 12392 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 ∈ ℝ+ → 0 ≤ 𝑐)
11021101adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ≤ 𝑐)
11031041iftrued 4473 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = 𝑐)
11041102, 1103breqtrrd 5086 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1105771, 1038, 1063ltleii 10752 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ (π / 2)
1106 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → ¬ 𝑐 ≤ (π / 2))
11071106iffalsed 4476 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = (π / 2))
11081105, 1107breqtrrid 5096 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
11091104, 1108pm2.61dan 809 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
11101038a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ ℝ+ → (π / 2) ∈ ℝ)
11111034, 1110ifcld 4510 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ)
11121111le0neg2d 11201 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → (0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ↔ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 0))
11131109, 1112mpbid 233 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 0)
1114 volioo 24099 . . . . . . . . . . . . . . . . . 18 ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ ∧ 0 ∈ ℝ ∧ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 0) → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) = (0 − -if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
11151099, 1100, 1113, 1114syl3anc 1363 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) = (0 − -if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
1116 0cn 10622 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℂ
11171116a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → 0 ∈ ℂ)
11181111recnd 10658 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℂ)
11191117, 1118subnegd 10993 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (0 − -if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) = (0 + if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
11201118addid2d 10830 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (0 + if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
11211115, 1119, 11203eqtrd 2860 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1122 min1 12572 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ ∧ (π / 2) ∈ ℝ) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 𝑐)
11231034, 1038, 1122sylancl 586 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 𝑐)
11241121, 1123eqbrtrd 5080 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℝ+ → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐)
11251098, 1124jca 512 . . . . . . . . . . . . . 14 (𝑐 ∈ ℝ+ → ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐))
11261125adantr 481 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐))
1127 sseq1 3991 . . . . . . . . . . . . . . . 16 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (𝑢 ⊆ (-π[,]π) ↔ (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π)))
1128 fveq2 6664 . . . . . . . . . . . . . . . . 17 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (vol‘𝑢) = (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)))
11291128breq1d 5068 . . . . . . . . . . . . . . . 16 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ((vol‘𝑢) ≤ 𝑐 ↔ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐))
11301127, 1129anbi12d 630 . . . . . . . . . . . . . . 15 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) ↔ ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐)))
1131 itgeq1 24302 . . . . . . . . . . . . . . . . . 18 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = ∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11321131fveq2d 6668 . . . . . . . . . . . . . . . . 17 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
11331132breq1d 5068 . . . . . . . . . . . . . . . 16 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ((abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11341133ralbidv 3197 . . . . . . . . . . . . . . 15 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11351130, 1134imbi12d 346 . . . . . . . . . . . . . 14 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ↔ (((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
11361135rspcva 3620 . . . . . . . . . . . . 13 (((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → (((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11371078, 1126, 1136sylc 65 . . . . . . . . . . . 12 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
113811373adant1 1122 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
1139 oveq1 7152 . . . . . . . . . . . . . . . 16 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (𝑑(,)0) = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0))
11401139itgeq1d 42122 . . . . . . . . . . . . . . 15 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = ∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11411140fveq2d 6668 . . . . . . . . . . . . . 14 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
11421141breq1d 5068 . . . . . . . . . . . . 13 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11431142ralbidv 3197 . . . . . . . . . . . 12 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11441143rspcev 3622 . . . . . . . . . . 11 ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0) ∧ ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
11451074, 1138, 1144syl2anc 584 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
11461145rexlimdv3a 3286 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11471028, 1146mpd 15 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
1148900, 1147r19.29a 3289 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
11491148ralrimiva 3182 . . . . . 6 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
1150 nnex 11633 . . . . . . . . 9 ℕ ∈ V
11511150mptex 6978 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ∈ V
11521151a1i 11 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ∈ V)
1153 eqidd 2822 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠))
1154777adantl 482 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
1155779ad4ant14 748 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
1156777adantl 482 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
1157 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
1158 simpl 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑘 ∈ ℕ)
11591157, 1158eqeltrd 2913 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℕ)
11601159nnred 11642 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℝ)
1161729a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / 2) ∈ ℝ)
11621160, 1161readdcld 10659 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (𝑛 + (1 / 2)) ∈ ℝ)
11631162adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑛 + (1 / 2)) ∈ ℝ)
1164214, 1156sseldi 3964 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
11651163, 1164remulcld 10660 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
11661165resincld 15486 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11671156, 1166, 832syl2anc 584 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
11681167adantlll 714 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
11691160adantll 710 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℝ)
11701169adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑛 ∈ ℝ)
1171 1red 10631 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 1 ∈ ℝ)
11721171rehalfcld 11873 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (1 / 2) ∈ ℝ)
11731170, 1172readdcld 10659 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑛 + (1 / 2)) ∈ ℝ)
1174214, 1154sseldi 3964 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
11751173, 1174remulcld 10660 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
11761175resincld 15486 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11771168, 1176eqeltrd 2913 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) ∈ ℝ)
11781155, 1177remulcld 10660 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
1179829fvmpt2 6772 . . . . . . . . . . 11 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
11801154, 1178, 1179syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
1181 oveq1 7152 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
11821181oveq1d 7160 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
11831182fveq2d 6668 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11841183ad2antlr 723 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11851168, 1184eqtrd 2856 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11861185oveq2d 7161 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
11871180, 1186eqtrd 2856 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
11881187itgeq2dv 24311 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → ∫(-π(,)0)(𝐺𝑠) d𝑠 = ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
1189 simpr 485 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
1190810itgeq2dv 24311 . . . . . . . . . . 11 (𝑛 = 𝑘 → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 = ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11911190eleq1d 2897 . . . . . . . . . 10 (𝑛 = 𝑘 → (∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ ↔ ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ))
1192805, 1191imbi12d 346 . . . . . . . . 9 (𝑛 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ) ↔ ((𝜑𝑘 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)))
1193779adantlr 711 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
1194 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
11951194, 777, 826syl2an 595 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11961193, 1195remulcld 10660 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
11971196, 858itgcl 24313 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
11981192, 1197chvarv 2408 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
11991153, 1188, 1189, 1198fvmptd 6768 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑘) = ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
12009, 2, 1152, 1199, 1198clim0c 14854 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ⇝ 0 ↔ ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
12011149, 1200mpbird 258 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ⇝ 0)
12021150mptex 6978 . . . . . . 7 (𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π)) ∈ V
12036, 1202eqeltri 2909 . . . . . 6 𝐸 ∈ V
12041203a1i 11 . . . . 5 (𝜑𝐸 ∈ V)
12051150mptex 6978 . . . . . . 7 (𝑛 ∈ ℕ ↦ π) ∈ V
12061205a1i 11 . . . . . 6 (𝜑 → (𝑛 ∈ ℕ ↦ π) ∈ V)
1207 picn 24974 . . . . . . 7 π ∈ ℂ
12081207a1i 11 . . . . . 6 (𝜑 → π ∈ ℂ)
1209 eqidd 2822 . . . . . . . 8 (𝑚 ∈ ℕ → (𝑛 ∈ ℕ ↦ π) = (𝑛 ∈ ℕ ↦ π))
1210 eqidd 2822 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑛 = 𝑚) → π = π)
1211 id 22 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ)
121210a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ → π ∈ ℝ)
12131209, 1210, 1211, 1212fvmptd 6768 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑚) = π)
12141213adantl 482 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ π)‘𝑚) = π)
12159, 2, 1206, 1208, 1214climconst 14890 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ π) ⇝ π)
1216771, 56gtneii 10741 . . . . . 6 π ≠ 0
12171216a1i 11 . . . . 5 (𝜑 → π ≠ 0)
121816adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
121928adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
122039adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
1221838, 1218, 1219, 1220, 40, 41, 42, 843, 831, 829fourierdlem67 42339 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺:(-π[,]π)⟶ℝ)
12221221adantr 481 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → 𝐺:(-π[,]π)⟶ℝ)
1223814sselda 3966 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
12241222, 1223ffvelrnd 6845 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝐺𝑠) ∈ ℝ)
12251221ffvelrnda 6844 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
12261221feqmptd 6727 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
12271226, 856eqeltrrd 2914 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
1228814, 816, 1225, 1227iblss 24334 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ (𝐺𝑠)) ∈ 𝐿1)
12291224, 1228itgcl 24313 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)(𝐺𝑠) d𝑠 ∈ ℂ)
1230 eqid 2821 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)
12311230fvmpt2 6772 . . . . . . 7 ((𝑛 ∈ ℕ ∧ ∫(-π(,)0)(𝐺𝑠) d𝑠 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) = ∫(-π(,)0)(𝐺𝑠) d𝑠)
12321194, 1229, 1231syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) = ∫(-π(,)0)(𝐺𝑠) d𝑠)
12331232, 1229eqeltrd 2913 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) ∈ ℂ)
1234 id 22 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
1235 eqid 2821 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ π) = (𝑛 ∈ ℕ ↦ π)
12361235fvmpt2 6772 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ π ∈ ℝ) → ((𝑛 ∈ ℕ ↦ π)‘𝑛) = π)
12371234, 10, 1236sylancl 586 . . . . . . 7 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑛) = π)
12381207a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → π ∈ ℂ)
12391216a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → π ≠ 0)
12401238, 1239jca 512 . . . . . . . 8 (𝑛 ∈ ℕ → (π ∈ ℂ ∧ π ≠ 0))
1241 eldifsn 4713 . . . . . . . 8 (π ∈ (ℂ ∖ {0}) ↔ (π ∈ ℂ ∧ π ≠ 0))
12421240, 1241sylibr 235 . . . . . . 7 (𝑛 ∈ ℕ → π ∈ (ℂ ∖ {0}))
12431237, 1242eqeltrd 2913 . . . . . 6 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑛) ∈ (ℂ ∖ {0}))
12441243adantl 482 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ π)‘𝑛) ∈ (ℂ ∖ {0}))
12451207a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ∈ ℂ)
12461216a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
12471229, 1245, 1246divcld 11405 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (∫(-π(,)0)(𝐺𝑠) d𝑠 / π) ∈ ℂ)
12486fvmpt2 6772 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π) ∈ ℂ) → (𝐸𝑛) = (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
12491194, 1247, 1248syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
12501232eqcomd 2827 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)(𝐺𝑠) d𝑠 = ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛))
12511237eqcomd 2827 . . . . . . . 8 (𝑛 ∈ ℕ → π = ((𝑛 ∈ ℕ ↦ π)‘𝑛))
12521251adantl 482 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → π = ((𝑛 ∈ ℕ ↦ π)‘𝑛))
12531250, 1252oveq12d 7163 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (∫(-π(,)0)(𝐺𝑠) d𝑠 / π) = (((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) / ((𝑛 ∈ ℕ ↦ π)‘𝑛)))
12541249, 1253eqtrd 2856 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) / ((𝑛 ∈ ℕ ↦ π)‘𝑛)))
12553, 4, 5, 8, 9, 2, 1201, 1204, 1215, 1217, 1233, 1244, 1254climdivf 41773 . . . 4 (𝜑𝐸 ⇝ (0 / π))
12561207, 1216div0i 11363 . . . . 5 (0 / π) = 0
12571256a1i 11 . . . 4 (𝜑 → (0 / π) = 0)
12581255, 1257breqtrd 5084 . . 3 (𝜑𝐸 ⇝ 0)
1259 fourierdlem103.z . . . . 5 𝑍 = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
12601150mptex 6978 . . . . 5 (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ∈ V
12611259, 1260eqeltri 2909 . . . 4 𝑍 ∈ V
12621261a1i 11 . . 3 (𝜑𝑍 ∈ V)
12631150mptex 6978 . . . . 5 (𝑚 ∈ ℕ ↦ (𝑊 / 2)) ∈ V
12641263a1i 11 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ (𝑊 / 2)) ∈ V)
1265 limccl 24402 . . . . . 6 ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ⊆ ℂ
12661265, 38sseldi 3964 . . . . 5 (𝜑𝑊 ∈ ℂ)
12671266halfcld 11871 . . . 4 (𝜑 → (𝑊 / 2) ∈ ℂ)
1268 eqidd 2822 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑚 ∈ ℕ ↦ (𝑊 / 2)) = (𝑚 ∈ ℕ ↦ (𝑊 / 2)))
1269 eqidd 2822 . . . . 5 (((𝜑𝑛 ∈ (ℤ‘1)) ∧ 𝑚 = 𝑛) → (𝑊 / 2) = (𝑊 / 2))
12709eqcomi 2830 . . . . . . . 8 (ℤ‘1) = ℕ
12711270eleq2i 2904 . . . . . . 7 (𝑛 ∈ (ℤ‘1) ↔ 𝑛 ∈ ℕ)
12721271biimpi 217 . . . . . 6 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
12731272adantl 482 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
12741267adantr 481 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑊 / 2) ∈ ℂ)
12751268, 1269, 1273, 1274fvmptd 6768 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛) = (𝑊 / 2))
12761, 2, 1264, 1267, 1275climconst 14890 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ (𝑊 / 2)) ⇝ (𝑊 / 2))
12771247, 6fmptd 6871 . . . . 5 (𝜑𝐸:ℕ⟶ℂ)
12781277adantr 481 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → 𝐸:ℕ⟶ℂ)
12791278, 1273ffvelrnd 6845 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝐸𝑛) ∈ ℂ)
12801275, 1274eqeltrd 2913 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛) ∈ ℂ)
12811275oveq2d 7161 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝐸𝑛) + ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛)) = ((𝐸𝑛) + (𝑊 / 2)))
1282815a1i 11 . . . . . 6 (𝜑 → (-π(,)0) ∈ dom vol)
128352a1i 11 . . . . . . . . . . . . 13 (𝑠 ∈ (-π(,)0) → -π ∈ ℝ*)
1284 0red 10633 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π(,)0) → 0 ∈ ℝ)
12851284rexrd 10680 . . . . . . . . . . . . 13 (𝑠 ∈ (-π(,)0) → 0 ∈ ℝ*)
1286 id 22 . . . . . . . . . . . . 13 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ (-π(,)0))
1287 iooltub 41666 . . . . . . . . . . . . 13 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑠 ∈ (-π(,)0)) → 𝑠 < 0)
12881283, 1285, 1286, 1287syl3anc 1363 . . . . . . . . . . . 12 (𝑠 ∈ (-π(,)0) → 𝑠 < 0)
1289787, 1288ltned 10765 . . . . . . . . . . 11 (𝑠 ∈ (-π(,)0) → 𝑠 ≠ 0)
12901289neneqd 3021 . . . . . . . . . 10 (𝑠 ∈ (-π(,)0) → ¬ 𝑠 = 0)
1291 velsn 4575 . . . . . . . . . 10 (𝑠 ∈ {0} ↔ 𝑠 = 0)
12921290, 1291sylnibr 330 . . . . . . . . 9 (𝑠 ∈ (-π(,)0) → ¬ 𝑠 ∈ {0})
1293777, 1292eldifd 3946 . . . . . . . 8 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
12941293ssriv 3970 . . . . . . 7 (-π(,)0) ⊆ ((-π[,]π) ∖ {0})
12951294a1i 11 . . . . . 6 (𝜑 → (-π(,)0) ⊆ ((-π[,]π) ∖ {0}))
1296 fourierdlem103.d . . . . . 6 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
1297787adantl 482 . . . . . . . 8 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
1298 0red 10633 . . . . . . . 8 ((𝜑𝑠 ∈ (-π(,)0)) → 0 ∈ ℝ)
1299787, 1284, 1288ltled 10777 . . . . . . . . 9 (𝑠 ∈ (-π(,)0) → 𝑠 ≤ 0)
13001299adantl 482 . . . . . . . 8 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑠 ≤ 0)
13011297, 1298, 1300lensymd 10780 . . . . . . 7 ((𝜑𝑠 ∈ (-π(,)0)) → ¬ 0 < 𝑠)
13021301iffalsed 4476 . . . . . 6 ((𝜑𝑠 ∈ (-π(,)0)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
1303 eqid 2821 . . . . . . . 8 (𝐷𝑛) = (𝐷𝑛)
130411a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -π ∈ ℝ)
1305 0red 10633 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ)
130611, 771, 901ltleii 10752 . . . . . . . . 9 -π ≤ 0
13071306a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -π ≤ 0)
1308 eqid 2821 . . . . . . . 8 (𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) = (𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
13091296, 1194, 1303, 1304, 1305, 1307, 1308dirkeritg 42268 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐷𝑛)‘𝑠) d𝑠 = (((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) − ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π)))
1310 ubicc2 12843 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -π ≤ 0) → 0 ∈ (-π[,]0))
131152, 53, 1306, 1310mp3an 1452 . . . . . . . . . 10 0 ∈ (-π[,]0)
1312 oveq1 7152 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → (𝑠 / 2) = (0 / 2))
1313239, 244div0i 11363 . . . . . . . . . . . . . . . . 17 (0 / 2) = 0
13141313a1i 11 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → (0 / 2) = 0)
13151312, 1314eqtrd 2856 . . . . . . . . . . . . . . 15 (𝑠 = 0 → (𝑠 / 2) = 0)
1316 oveq2 7153 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 0 → (𝑘 · 𝑠) = (𝑘 · 0))
1317 elfzelz 12898 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℤ)
13181317zcnd 12077 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℂ)
13191318mul01d 10828 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → (𝑘 · 0) = 0)
13201316, 1319sylan9eq 2876 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 · 𝑠) = 0)
13211320fveq2d 6668 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘(𝑘 · 𝑠)) = (sin‘0))
1322 sin0 15492 . . . . . . . . . . . . . . . . . . . . 21 (sin‘0) = 0
13231322a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘0) = 0)
13241321, 1323eqtrd 2856 . . . . . . . . . . . . . . . . . . 19 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘(𝑘 · 𝑠)) = 0)
13251324oveq1d 7160 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = (0 / 𝑘))
1326 0red 10633 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 0 ∈ ℝ)
1327 1red 10631 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 1 ∈ ℝ)
13281317zred 12076 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℝ)
132999a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 0 < 1)
1330 elfzle1 12900 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 1 ≤ 𝑘)
13311326, 1327, 1328, 1329, 1330ltletrd 10789 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → 0 < 𝑘)
13321331gt0ne0d 11193 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 𝑘 ≠ 0)
13331318, 1332div0d 11404 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → (0 / 𝑘) = 0)
13341333adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (0 / 𝑘) = 0)
13351325, 1334eqtrd 2856 . . . . . . . . . . . . . . . . 17 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
13361335sumeq2dv 15050 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)0)
1337 fzfi 13330 . . . . . . . . . . . . . . . . . . 19 (1...𝑛) ∈ Fin
13381337olci 860 . . . . . . . . . . . . . . . . . 18 ((1...𝑛) ⊆ (ℤ ) ∨ (1...𝑛) ∈ Fin)
1339 sumz 15069 . . . . . . . . . . . . . . . . . 18 (((1...𝑛) ⊆ (ℤ ) ∨ (1...𝑛) ∈ Fin) → Σ𝑘 ∈ (1...𝑛)0 = 0)
13401338, 1339ax-mp 5 . . . . . . . . . . . . . . . . 17 Σ𝑘 ∈ (1...𝑛)0 = 0
13411340a1i 11 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)0 = 0)
13421336, 1341eqtrd 2856 . . . . . . . . . . . . . . 15 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
13431315, 1342oveq12d 7163 . . . . . . . . . . . . . 14 (𝑠 = 0 → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = (0 + 0))
1344 00id 10804 . . . . . . . . . . . . . . 15 (0 + 0) = 0
13451344a1i 11 . . . . . . . . . . . . . 14 (𝑠 = 0 → (0 + 0) = 0)
13461343, 1345eqtrd 2856 . . . . . . . . . . . . 13 (𝑠 = 0 → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = 0)
13471346oveq1d 7160 . . . . . . . . . . . 12 (𝑠 = 0 → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = (0 / π))
13481256a1i 11 . . . . . . . . . . . 12 (𝑠 = 0 → (0 / π) = 0)
13491347, 1348eqtrd 2856 . . . . . . . . . . 11 (𝑠 = 0 → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = 0)
1350771elexi 3514 . . . . . . . . . . 11 0 ∈ V
13511349, 1308, 1350fvmpt 6762 . . . . . . . . . 10 (0 ∈ (-π[,]0) → ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) = 0)
13521311, 1351ax-mp 5 . . . . . . . . 9 ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) = 0
1353 lbicc2 12842 . . . . . . . . . . . 12 ((-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -π ≤ 0) → -π ∈ (-π[,]0))
135452, 53, 1306, 1353mp3an 1452 . . . . . . . . . . 11 -π ∈ (-π[,]0)
1355 oveq1 7152 . . . . . . . . . . . . . 14 (𝑠 = -π → (𝑠 / 2) = (-π / 2))
1356 oveq2 7153 . . . . . . . . . . . . . . . . 17 (𝑠 = -π → (𝑘 · 𝑠) = (𝑘 · -π))
13571356fveq2d 6668 . . . . . . . . . . . . . . . 16 (𝑠 = -π → (sin‘(𝑘 · 𝑠)) = (sin‘(𝑘 · -π)))
13581357oveq1d 7160 . . . . . . . . . . . . . . 15 (𝑠 = -π → ((sin‘(𝑘 · 𝑠)) / 𝑘) = ((sin‘(𝑘 · -π)) / 𝑘))
13591358sumeq2sdv 15051 . . . . . . . . . . . . . 14 (𝑠 = -π → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘))
13601355, 1359oveq12d 7163 . . . . . . . . . . . . 13 (𝑠 = -π → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = ((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)))
13611360oveq1d 7160 . . . . . . . . . . . 12 (𝑠 = -π → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π))
1362 ovex 7178 . . . . . . . . . . . 12 (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π) ∈ V
13631361, 1308, 1362fvmpt 6762 . . . . . . . . . . 11 (-π ∈ (-π[,]0) → ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π) = (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π))
13641354, 1363ax-mp 5 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π) = (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π)
1365 mulneg12 11067 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℂ ∧ π ∈ ℂ) → (-𝑘 · π) = (𝑘 · -π))
13661318, 1207, 1365sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → (-𝑘 · π) = (𝑘 · -π))
13671366eqcomd 2827 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → (𝑘 · -π) = (-𝑘 · π))
13681367oveq1d 7160 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → ((𝑘 · -π) / π) = ((-𝑘 · π) / π))
13691318negcld 10973 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → -𝑘 ∈ ℂ)
13701207a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → π ∈ ℂ)
13711216a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → π ≠ 0)
13721369, 1370, 1371divcan4d 11411 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → ((-𝑘 · π) / π) = -𝑘)
13731368, 1372eqtrd 2856 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → ((𝑘 · -π) / π) = -𝑘)
13741317znegcld 12078 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → -𝑘 ∈ ℤ)
13751373, 1374eqeltrd 2913 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑛) → ((𝑘 · -π) / π) ∈ ℤ)
1376 negpicn 24977 . . . . . . . . . . . . . . . . . . . 20 -π ∈ ℂ
13771376a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → -π ∈ ℂ)
13781318, 1377mulcld 10650 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → (𝑘 · -π) ∈ ℂ)
1379 sineq0 25038 . . . . . . . . . . . . . . . . . 18 ((𝑘 · -π) ∈ ℂ → ((sin‘(𝑘 · -π)) = 0 ↔ ((𝑘 · -π) / π) ∈ ℤ))
13801378, 1379syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · -π)) = 0 ↔ ((𝑘 · -π) / π) ∈ ℤ))
13811375, 1380mpbird 258 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑛) → (sin‘(𝑘 · -π)) = 0)
13821381oveq1d 7160 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · -π)) / 𝑘) = (0 / 𝑘))
13831382, 1333eqtrd 2856 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · -π)) / 𝑘) = 0)
13841383sumeq2i 15046 . . . . . . . . . . . . 13 Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)0
13851384, 1340eqtri 2844 . . . . . . . . . . . 12 Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘) = 0
13861385oveq2i 7156 . . . . . . . . . . 11 ((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) = ((-π / 2) + 0)
13871386oveq1i 7155 . . . . . . . . . 10 (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π) = (((-π / 2) + 0) / π)
13881376, 239, 244divcli 11371 . . . . . . . . . . . . . 14 (-π / 2) ∈ ℂ
13891388addid1i 10816 . . . . . . . . . . . . 13 ((-π / 2) + 0) = (-π / 2)
1390 divneg 11321 . . . . . . . . . . . . . 14 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
13911207, 239, 244, 1390mp3an 1452 . . . . . . . . . . . . 13 -(π / 2) = (-π / 2)
13921389, 1391eqtr4i 2847 . . . . . . . . . . . 12 ((-π / 2) + 0) = -(π / 2)
13931392oveq1i 7155 . . . . . . . . . . 11 (((-π / 2) + 0) / π) = (-(π / 2) / π)
13941038recni 10644 . . . . . . . . . . . . 13 (π / 2) ∈ ℂ
1395 divneg 11321 . . . . . . . . . . . . 13 (((π / 2) ∈ ℂ ∧ π ∈ ℂ ∧ π ≠ 0) → -((π / 2) / π) = (-(π / 2) / π))
13961394, 1207, 1216, 1395mp3an 1452 . . . . . . . . . . . 12 -((π / 2) / π) = (-(π / 2) / π)
13971396eqcomi 2830 . . . . . . . . . . 11 (-(π / 2) / π) = -((π / 2) / π)
13981207, 239, 1207, 244, 1216divdiv32i 11384 . . . . . . . . . . . . 13 ((π / 2) / π) = ((π / π) / 2)
13991207, 1216dividi 11362 . . . . . . . . . . . . . 14 (π / π) = 1
14001399oveq1i 7155 . . . . . . . . . . . . 13 ((π / π) / 2) = (1 / 2)
14011398, 1400eqtri 2844 . . . . . . . . . . . 12 ((π / 2) / π) = (1 / 2)
14021401negeqi 10868 . . . . . . . . . . 11 -((π / 2) / π) = -(1 / 2)
14031393, 1397, 14023eqtri 2848 . . . . . . . . . 10 (((-π / 2) + 0) / π) = -(1 / 2)
14041364, 1387, 14033eqtri 2848 . . . . . . . . 9 ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π) = -(1 / 2)
14051352, 1404oveq12i 7157 . . . . . . . 8 (((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) − ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π)) = (0 − -(1 / 2))
14061405a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) − ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π)) = (0 − -(1 / 2)))
1407 halfcn 11841 . . . . . . . . . 10 (1 / 2) ∈ ℂ
14081116, 1407subnegi 10954 . . . . . . . . 9 (0 − -(1 / 2)) = (0 + (1 / 2))
14091407addid2i 10817 . . . . . . . . 9 (0 + (1 / 2)) = (1 / 2)
14101408, 1409eqtri 2844 . . . . . . . 8 (0 − -(1 / 2)) = (1 / 2)
14111410a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (0 − -(1 / 2)) = (1 / 2))
14121309, 1406, 14113eqtrd 2860 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
141315, 16, 264, 265, 267, 839, 269, 271, 273, 40, 41, 42, 831, 829, 850, 599, 852, 854, 27, 38, 1282, 1295, 6, 1296, 39, 1302, 1412fourierdlem95 42367 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑊 / 2)) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14141273, 1413syldan 591 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝐸𝑛) + (𝑊 / 2)) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14151259a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑍 = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
1416 fveq2 6664 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝐷𝑚) = (𝐷𝑛))
14171416fveq1d 6666 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝐷𝑚)‘𝑠) = ((𝐷𝑛)‘𝑠))
14181417oveq2d 7161 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
14191418adantr 481 . . . . . . . . 9 ((𝑚 = 𝑛𝑠 ∈ (-π(,)0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
14201419itgeq2dv 24311 . . . . . . . 8 (𝑚 = 𝑛 → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14211420adantl 482 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = 𝑛) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
142215adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π(,)0)) → 𝐹:ℝ⟶ℝ)
142316adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑋 ∈ ℝ)
14241423, 1297readdcld 10659 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π(,)0)) → (𝑋 + 𝑠) ∈ ℝ)
14251422, 1424ffvelrnd 6845 . . . . . . . . . 10 ((𝜑𝑠 ∈ (-π(,)0)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14261425adantlr 711 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14271296dirkerf 42263 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛):ℝ⟶ℝ)
14281427ad2antlr 723 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝐷𝑛):ℝ⟶ℝ)
1429787adantl 482 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
14301428, 1429ffvelrnd 6845 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
14311426, 1430remulcld 10660 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
143215adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ)
143316adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
1434214sseli 3962 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
14351434adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
14361433, 1435readdcld 10659 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑋 + 𝑠) ∈ ℝ)
14371432, 1436ffvelrnd 6845 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14381437adantlr 711 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14391427ad2antlr 723 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐷𝑛):ℝ⟶ℝ)
14401434adantl 482 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
14411439, 1440ffvelrnd 6845 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
14421438, 1441remulcld 10660 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
144310a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
14441296dirkercncf 42273 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
14451444adantl 482 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
1446 eqid 2821 . . . . . . . . . 10 (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
14471304, 1443, 838, 1218, 264, 844, 845, 846, 847, 848, 80, 849, 1445, 1446fourierdlem84 42356 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
1448814, 816, 1442, 1447iblss 24334 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
14491431, 1448itgrecl 24327 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℝ)
14501415, 1421, 1194, 1449fvmptd 6768 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14511450eqcomd 2827 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 = (𝑍𝑛))
14521273, 1451syldan 591 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 = (𝑍𝑛))
14531281, 1414, 14523eqtrrd 2861 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑍𝑛) = ((𝐸𝑛) + ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛)))
14541, 2, 1258, 1262, 1276, 1279, 1280, 1453climadd 14978 . 2 (𝜑𝑍 ⇝ (0 + (𝑊 / 2)))
14551267addid2d 10830 . 2 (𝜑 → (0 + (𝑊 / 2)) = (𝑊 / 2))
14561454, 1455breqtrd 5084 1 (𝜑𝑍 ⇝ (𝑊 / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841  w3a 1079   = wceq 1528  wtru 1529  wcel 2105  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3495  csb 3882  cdif 3932  cun 3933  cin 3934  wss 3935  c0 4290  ifcif 4465  {csn 4559  {cpr 4561   class class class wbr 5058  cmpt 5138  dom cdm 5549  ran crn 5550  cres 5551  cio 6306   Fn wfn 6344  wf 6345  cfv 6349   Isom wiso 6350  crio 7102  (class class class)co 7145  m cmap 8396  Fincfn 8498  supcsup 8893  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  cn 11627  2c2 11681  3c3 11682  0cn0 11886  cz 11970  cuz 12232  +crp 12379  (,)cioo 12728  [,]cicc 12731  ...cfz 12882  ..^cfzo 13023   mod cmo 13227  chash 13680  abscabs 14583  cli 14831  Σcsu 15032  sincsin 15407  πcpi 15410  TopOpenctopn 16685  topGenctg 16701  fldccnfld 20475  intcnt 21555  cnccncf 23413  volcvol 23993  𝐿1cibl 24147  citg 24148   lim climc 24389   D cdv 24390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-13 2383  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-inf2 9093  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-symdif 4218  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-ofr 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-omul 8098  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-dju 9319  df-card 9357  df-acn 9360  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-xnn0 11957  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ioc 12733  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14416  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-limsup 14818  df-clim 14835  df-rlim 14836  df-sum 15033  df-ef 15411  df-sin 15413  df-cos 15414  df-pi 15416  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17891  df-mnd 17902  df-submnd 17947  df-mulg 18165  df-cntz 18387  df-cmn 18839  df-psmet 20467  df-xmet 20468  df-met 20469  df-bl 20470  df-mopn 20471  df-fbas 20472  df-fg 20473  df-cnfld 20476  df-top 21432  df-topon 21449  df-topsp 21471  df-bases 21484  df-cld 21557  df-ntr 21558  df-cls 21559  df-nei 21636  df-lp 21674  df-perf 21675  df-cn 21765  df-cnp 21766  df-t1 21852  df-haus 21853  df-cmp 21925  df-tx 22100  df-hmeo 22293  df-fil 22384  df-fm 22476  df-flim 22477  df-flf 22478  df-xms 22859  df-ms 22860  df-tms 22861  df-cncf 23415  df-ovol 23994  df-vol 23995  df-mbf 24149  df-itg1 24150  df-itg2 24151  df-ibl 24152  df-itg 24153  df-0p 24200  df-limc 24393  df-dv 24394
This theorem is referenced by:  fourierdlem112  42384
  Copyright terms: Public domain W3C validator