Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem103 Structured version   Visualization version   GIF version

Theorem fourierdlem103 42543
Description: The half lower part of the integral equal to the fourier partial sum, converges to half the left limit of the original function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem103.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem103.xre (𝜑𝑋 ∈ ℝ)
fourierdlem103.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem103.m (𝜑𝑀 ∈ ℕ)
fourierdlem103.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem103.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem103.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem103.fbdioo ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
fourierdlem103.fdvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
fourierdlem103.fdvbd ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
fourierdlem103.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem103.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem103.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem103.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem103.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem103.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem103.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem103.z 𝑍 = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
fourierdlem103.e 𝐸 = (𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
fourierdlem103.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem103.w (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem103.a (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem103.b (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem103.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem103.o 𝑂 = (𝑈 ↾ (-π[,]𝑑))
fourierdlem103.t 𝑇 = ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
fourierdlem103.n 𝑁 = ((♯‘𝑇) − 1)
fourierdlem103.j 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
fourierdlem103.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem103.1 𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
fourierdlem103.ch (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
Assertion
Ref Expression
fourierdlem103 (𝜑𝑍 ⇝ (𝑊 / 2))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑖,𝑡,𝑤,𝑧   𝐷,𝑖,𝑚,𝑠   𝑛,𝐸   𝑖,𝐹,𝑘,𝑙,𝑠,𝑡   𝑚,𝐹,𝑘   𝑤,𝐹,𝑧,𝑘,𝑠   𝑒,𝐺,𝑘,𝑠   𝑖,𝐺,𝑡   𝑖,𝐻,𝑠   𝑘,𝐽,𝑙,𝑠   𝑓,𝐽,𝑘   𝑖,𝐽,𝑡   𝑚,𝐽   𝑤,𝐽,𝑧   𝐾,𝑠   𝐿,𝑙,𝑠,𝑡   𝑘,𝑀,𝑙,𝑠,𝑖,𝑡   𝑚,𝑀,𝑝,𝑖   𝑖,𝑁,𝑘,𝑙,𝑠,𝑡   𝑒,𝑁,𝑙   𝑓,𝑁   𝑚,𝑁   𝑤,𝑁,𝑧   𝑒,𝑂,𝑙,𝑠,𝑘   𝑡,𝑂   𝑄,𝑙,𝑠,𝑖,𝑡   𝑄,𝑝   𝑅,𝑙,𝑠,𝑡   𝑆,𝑠   𝑇,𝑓   𝑈,𝑑,𝑘,𝑠,𝑙   𝑈,𝑛,𝑘,𝑠   𝑖,𝑉,𝑘,𝑠   𝑉,𝑝   𝑡,𝑉   𝑖,𝑊,𝑘,𝑙,𝑠,𝑡   𝑚,𝑊,𝑛,𝑖   𝑤,𝑊,𝑧   𝑖,𝑋,𝑘,𝑙,𝑠,𝑡   𝑚,𝑋,𝑝   𝑤,𝑋,𝑧   𝑌,𝑠   𝑛,𝑍   𝑒,𝑑   𝑖,𝑑,𝜑,𝑡,𝑘,𝑙,𝑠   𝜑,𝑒   𝜒,𝑠   𝑓,𝑑,𝜑   𝑤,𝑑,𝑧,𝜑   𝑒,𝑛,𝜑   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑝)   𝜒(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐴(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐵(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐶(𝑒,𝑓,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝐷(𝑧,𝑤,𝑡,𝑒,𝑓,𝑘,𝑛,𝑝,𝑑,𝑙)   𝑃(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝑄(𝑧,𝑤,𝑒,𝑓,𝑘,𝑚,𝑛,𝑑)   𝑅(𝑧,𝑤,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑)   𝑆(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝑇(𝑧,𝑤,𝑡,𝑒,𝑖,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝑈(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑚,𝑝)   𝐸(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑠,𝑝,𝑑,𝑙)   𝐹(𝑒,𝑓,𝑛,𝑝,𝑑)   𝐺(𝑧,𝑤,𝑓,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐻(𝑧,𝑤,𝑡,𝑒,𝑓,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐽(𝑒,𝑛,𝑝,𝑑)   𝐾(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐿(𝑧,𝑤,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑)   𝑀(𝑧,𝑤,𝑒,𝑓,𝑛,𝑑)   𝑁(𝑛,𝑝,𝑑)   𝑂(𝑧,𝑤,𝑓,𝑖,𝑚,𝑛,𝑝,𝑑)   𝑉(𝑧,𝑤,𝑒,𝑓,𝑚,𝑛,𝑑,𝑙)   𝑊(𝑒,𝑓,𝑝,𝑑)   𝑋(𝑒,𝑓,𝑛,𝑑)   𝑌(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝑍(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑠,𝑝,𝑑,𝑙)

Proof of Theorem fourierdlem103
Dummy variables 𝑏 𝑟 𝑐 𝑢 𝑗 𝑦 𝑥 𝑣 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . 3 (ℤ‘1) = (ℤ‘1)
2 1zzd 12014 . . 3 (𝜑 → 1 ∈ ℤ)
3 nfv 1915 . . . . 5 𝑛𝜑
4 nfmpt1 5164 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)
5 nfmpt1 5164 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ π)
6 fourierdlem103.e . . . . . 6 𝐸 = (𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
7 nfmpt1 5164 . . . . . 6 𝑛(𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
86, 7nfcxfr 2975 . . . . 5 𝑛𝐸
9 nnuz 12282 . . . . 5 ℕ = (ℤ‘1)
10 pire 25044 . . . . . . . . . . . . . . . . 17 π ∈ ℝ
1110renegcli 10947 . . . . . . . . . . . . . . . 16 -π ∈ ℝ
1211a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ ℝ)
13 elioore 12769 . . . . . . . . . . . . . . . 16 (𝑑 ∈ (-π(,)0) → 𝑑 ∈ ℝ)
1413adantl 484 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 ∈ ℝ)
15 fourierdlem103.f . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:ℝ⟶ℝ)
16 fourierdlem103.xre . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋 ∈ ℝ)
17 ioossre 12799 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋(,)+∞) ⊆ ℝ
1817a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
1915, 18fssresd 6545 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
20 ioosscn 41818 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋(,)+∞) ⊆ ℂ
2120a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
22 eqid 2821 . . . . . . . . . . . . . . . . . . . . . 22 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
23 pnfxr 10695 . . . . . . . . . . . . . . . . . . . . . . 23 +∞ ∈ ℝ*
2423a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → +∞ ∈ ℝ*)
2516ltpnfd 12517 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 < +∞)
2622, 24, 16, 25lptioo1cn 41976 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
27 fourierdlem103.y . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
2819, 21, 26, 27limcrecl 41959 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌 ∈ ℝ)
29 ioossre 12799 . . . . . . . . . . . . . . . . . . . . . . 23 (-∞(,)𝑋) ⊆ ℝ
3029a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (-∞(,)𝑋) ⊆ ℝ)
3115, 30fssresd 6545 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ)
32 ioosscn 41818 . . . . . . . . . . . . . . . . . . . . . 22 (-∞(,)𝑋) ⊆ ℂ
3332a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (-∞(,)𝑋) ⊆ ℂ)
34 mnfxr 10698 . . . . . . . . . . . . . . . . . . . . . . 23 -∞ ∈ ℝ*
3534a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ ∈ ℝ*)
3616mnfltd 12520 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ < 𝑋)
3722, 35, 16, 36lptioo2cn 41975 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋)))
38 fourierdlem103.w . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
3931, 33, 37, 38limcrecl 41959 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑊 ∈ ℝ)
40 fourierdlem103.h . . . . . . . . . . . . . . . . . . . 20 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
41 fourierdlem103.k . . . . . . . . . . . . . . . . . . . 20 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
42 fourierdlem103.u . . . . . . . . . . . . . . . . . . . 20 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
4315, 16, 28, 39, 40, 41, 42fourierdlem55 42495 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈:(-π[,]π)⟶ℝ)
44 ax-resscn 10594 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℂ
4544a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ℝ ⊆ ℂ)
4643, 45fssd 6528 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈:(-π[,]π)⟶ℂ)
4746adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑈:(-π[,]π)⟶ℂ)
4811a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → -π ∈ ℝ)
4910a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → π ∈ ℝ)
5048leidd 11206 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → -π ≤ -π)
51 0red 10644 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (-π(,)0) → 0 ∈ ℝ)
5211rexri 10699 . . . . . . . . . . . . . . . . . . . . . 22 -π ∈ ℝ*
53 0xr 10688 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ*
54 iooltub 41835 . . . . . . . . . . . . . . . . . . . . . 22 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑑 ∈ (-π(,)0)) → 𝑑 < 0)
5552, 53, 54mp3an12 1447 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (-π(,)0) → 𝑑 < 0)
56 pipos 25046 . . . . . . . . . . . . . . . . . . . . . 22 0 < π
5756a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (-π(,)0) → 0 < π)
5813, 51, 49, 55, 57lttrd 10801 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (-π(,)0) → 𝑑 < π)
5913, 49, 58ltled 10788 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → 𝑑 ≤ π)
60 iccss 12805 . . . . . . . . . . . . . . . . . . 19 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ -π ∧ 𝑑 ≤ π)) → (-π[,]𝑑) ⊆ (-π[,]π))
6148, 49, 50, 59, 60syl22anc 836 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ (-π(,)0) → (-π[,]𝑑) ⊆ (-π[,]π))
6261adantl 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → (-π[,]𝑑) ⊆ (-π[,]π))
6347, 62fssresd 6545 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑈 ↾ (-π[,]𝑑)):(-π[,]𝑑)⟶ℂ)
64 fourierdlem103.o . . . . . . . . . . . . . . . . . 18 𝑂 = (𝑈 ↾ (-π[,]𝑑))
6564a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂 = (𝑈 ↾ (-π[,]𝑑)))
6665feq1d 6499 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑂:(-π[,]𝑑)⟶ℂ ↔ (𝑈 ↾ (-π[,]𝑑)):(-π[,]𝑑)⟶ℂ))
6763, 66mpbird 259 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂:(-π[,]𝑑)⟶ℂ)
68 fourierdlem103.n . . . . . . . . . . . . . . . . . . 19 𝑁 = ((♯‘𝑇) − 1)
6911elexi 3513 . . . . . . . . . . . . . . . . . . . . . . . . . 26 -π ∈ V
7069prid1 4698 . . . . . . . . . . . . . . . . . . . . . . . . 25 -π ∈ {-π, 𝑑}
71 elun1 4152 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-π ∈ {-π, 𝑑} → -π ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))))
7270, 71ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 -π ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
73 fourierdlem103.t . . . . . . . . . . . . . . . . . . . . . . . 24 𝑇 = ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
7472, 73eleqtrri 2912 . . . . . . . . . . . . . . . . . . . . . . 23 -π ∈ 𝑇
7574ne0ii 4303 . . . . . . . . . . . . . . . . . . . . . 22 𝑇 ≠ ∅
7675a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇 ≠ ∅)
77 prfi 8793 . . . . . . . . . . . . . . . . . . . . . . . . 25 {-π, 𝑑} ∈ Fin
7877a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → {-π, 𝑑} ∈ Fin)
79 fzfi 13341 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0...𝑀) ∈ Fin
80 fourierdlem103.q . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
8180rnmptfi 41476 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0...𝑀) ∈ Fin → ran 𝑄 ∈ Fin)
8279, 81ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ran 𝑄 ∈ Fin
8382a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ran 𝑄 ∈ Fin)
84 infi 8742 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran 𝑄 ∈ Fin → (ran 𝑄 ∩ (-π(,)𝑑)) ∈ Fin)
8583, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (ran 𝑄 ∩ (-π(,)𝑑)) ∈ Fin)
86 unfi 8785 . . . . . . . . . . . . . . . . . . . . . . . 24 (({-π, 𝑑} ∈ Fin ∧ (ran 𝑄 ∩ (-π(,)𝑑)) ∈ Fin) → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ∈ Fin)
8778, 85, 86syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ∈ Fin)
8873, 87eqeltrid 2917 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑇 ∈ Fin)
89 hashnncl 13728 . . . . . . . . . . . . . . . . . . . . . 22 (𝑇 ∈ Fin → ((♯‘𝑇) ∈ ℕ ↔ 𝑇 ≠ ∅))
9088, 89syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((♯‘𝑇) ∈ ℕ ↔ 𝑇 ≠ ∅))
9176, 90mpbird 259 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (♯‘𝑇) ∈ ℕ)
92 nnm1nn0 11939 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑇) ∈ ℕ → ((♯‘𝑇) − 1) ∈ ℕ0)
9391, 92syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((♯‘𝑇) − 1) ∈ ℕ0)
9468, 93eqeltrid 2917 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ0)
9594adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ∈ ℕ0)
96 0red 10644 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 0 ∈ ℝ)
97 1red 10642 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 1 ∈ ℝ)
9895nn0red 11957 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ∈ ℝ)
99 0lt1 11162 . . . . . . . . . . . . . . . . . . . 20 0 < 1
10099a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 0 < 1)
101 2re 11712 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
102101a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → 2 ∈ ℝ)
10391nnred 11653 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (♯‘𝑇) ∈ ℝ)
104103adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (♯‘𝑇) ∈ ℝ)
105 ioogtlb 41819 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑑 ∈ (-π(,)0)) → -π < 𝑑)
10652, 53, 105mp3an12 1447 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 ∈ (-π(,)0) → -π < 𝑑)
10748, 106ltned 10776 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑 ∈ (-π(,)0) → -π ≠ 𝑑)
108107adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑 ∈ (-π(,)0)) → -π ≠ 𝑑)
109 hashprg 13757 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-π ∈ ℝ ∧ 𝑑 ∈ ℝ) → (-π ≠ 𝑑 ↔ (♯‘{-π, 𝑑}) = 2))
11012, 14, 109syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑 ∈ (-π(,)0)) → (-π ≠ 𝑑 ↔ (♯‘{-π, 𝑑}) = 2))
111108, 110mpbid 234 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → (♯‘{-π, 𝑑}) = 2)
112111eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → 2 = (♯‘{-π, 𝑑}))
11388adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑇 ∈ Fin)
114 ssun1 4148 . . . . . . . . . . . . . . . . . . . . . . . 24 {-π, 𝑑} ⊆ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
115114, 73sseqtrri 4004 . . . . . . . . . . . . . . . . . . . . . . 23 {-π, 𝑑} ⊆ 𝑇
116 hashssle 41614 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑇 ∈ Fin ∧ {-π, 𝑑} ⊆ 𝑇) → (♯‘{-π, 𝑑}) ≤ (♯‘𝑇))
117113, 115, 116sylancl 588 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → (♯‘{-π, 𝑑}) ≤ (♯‘𝑇))
118112, 117eqbrtrd 5088 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → 2 ≤ (♯‘𝑇))
119102, 104, 97, 118lesub1dd 11256 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (2 − 1) ≤ ((♯‘𝑇) − 1))
120 1e2m1 11765 . . . . . . . . . . . . . . . . . . . 20 1 = (2 − 1)
121119, 120, 683brtr4g 5100 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 1 ≤ 𝑁)
12296, 97, 98, 100, 121ltletrd 10800 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 0 < 𝑁)
123122gt0ne0d 11204 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ≠ 0)
12495, 123jca 514 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑁 ∈ ℕ0𝑁 ≠ 0))
125 elnnne0 11912 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
126124, 125sylibr 236 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ∈ ℕ)
127 fourierdlem103.j . . . . . . . . . . . . . . . . . 18 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
12850adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → -π ≤ -π)
12948, 13, 106ltled 10788 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 ∈ (-π(,)0) → -π ≤ 𝑑)
130129adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → -π ≤ 𝑑)
13112, 14, 12, 128, 130eliccd 41828 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ (-π[,]𝑑))
13214leidd 11206 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑𝑑)
13312, 14, 14, 130, 132eliccd 41828 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 ∈ (-π[,]𝑑))
134131, 133jca 514 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (-π ∈ (-π[,]𝑑) ∧ 𝑑 ∈ (-π[,]𝑑)))
135 vex 3497 . . . . . . . . . . . . . . . . . . . . . 22 𝑑 ∈ V
13669, 135prss 4753 . . . . . . . . . . . . . . . . . . . . 21 ((-π ∈ (-π[,]𝑑) ∧ 𝑑 ∈ (-π[,]𝑑)) ↔ {-π, 𝑑} ⊆ (-π[,]𝑑))
137134, 136sylib 220 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → {-π, 𝑑} ⊆ (-π[,]𝑑))
138 inss2 4206 . . . . . . . . . . . . . . . . . . . . . 22 (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ (-π(,)𝑑)
139138a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ (-π(,)𝑑))
140 ioossicc 12823 . . . . . . . . . . . . . . . . . . . . 21 (-π(,)𝑑) ⊆ (-π[,]𝑑)
141139, 140sstrdi 3979 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ (-π[,]𝑑))
142137, 141unssd 4162 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ⊆ (-π[,]𝑑))
14373, 142eqsstrid 4015 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑇 ⊆ (-π[,]𝑑))
14474a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ 𝑇)
145135prid2 4699 . . . . . . . . . . . . . . . . . . . . 21 𝑑 ∈ {-π, 𝑑}
146 elun1 4152 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ {-π, 𝑑} → 𝑑 ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))))
147145, 146ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 𝑑 ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
148147, 73eleqtrri 2912 . . . . . . . . . . . . . . . . . . 19 𝑑𝑇
149148a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑𝑇)
150113, 68, 127, 12, 14, 143, 144, 149fourierdlem52 42492 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → ((𝐽:(0...𝑁)⟶(-π[,]𝑑) ∧ (𝐽‘0) = -π) ∧ (𝐽𝑁) = 𝑑))
151150simpld 497 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝐽:(0...𝑁)⟶(-π[,]𝑑) ∧ (𝐽‘0) = -π))
152151simpld 497 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐽:(0...𝑁)⟶(-π[,]𝑑))
153151simprd 498 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → (𝐽‘0) = -π)
154150simprd 498 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → (𝐽𝑁) = 𝑑)
155 elfzoelz 13039 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℤ)
156155zred 12088 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℝ)
157156adantl 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℝ)
158157ltp1d 11570 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 < (𝑘 + 1))
15948, 13jca 514 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 ∈ (-π(,)0) → (-π ∈ ℝ ∧ 𝑑 ∈ ℝ))
16069, 135prss 4753 . . . . . . . . . . . . . . . . . . . . . . 23 ((-π ∈ ℝ ∧ 𝑑 ∈ ℝ) ↔ {-π, 𝑑} ⊆ ℝ)
161159, 160sylib 220 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (-π(,)0) → {-π, 𝑑} ⊆ ℝ)
162161adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → {-π, 𝑑} ⊆ ℝ)
163 ioossre 12799 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)𝑑) ⊆ ℝ
164138, 163sstri 3976 . . . . . . . . . . . . . . . . . . . . . 22 (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ ℝ
165164a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ ℝ)
166162, 165unssd 4162 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ⊆ ℝ)
16773, 166eqsstrid 4015 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑇 ⊆ ℝ)
168113, 167, 127, 68fourierdlem36 42477 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐽 Isom < , < ((0...𝑁), 𝑇))
169168adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐽 Isom < , < ((0...𝑁), 𝑇))
170 elfzofz 13054 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (0...𝑁))
171170adantl 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0...𝑁))
172 fzofzp1 13135 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → (𝑘 + 1) ∈ (0...𝑁))
173172adantl 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ (0...𝑁))
174 isorel 7079 . . . . . . . . . . . . . . . . 17 ((𝐽 Isom < , < ((0...𝑁), 𝑇) ∧ (𝑘 ∈ (0...𝑁) ∧ (𝑘 + 1) ∈ (0...𝑁))) → (𝑘 < (𝑘 + 1) ↔ (𝐽𝑘) < (𝐽‘(𝑘 + 1))))
175169, 171, 173, 174syl12anc 834 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 < (𝑘 + 1) ↔ (𝐽𝑘) < (𝐽‘(𝑘 + 1))))
176158, 175mpbid 234 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) < (𝐽‘(𝑘 + 1)))
17743adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑈:(-π[,]π)⟶ℝ)
178177, 62feqresmpt 6734 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑈 ↾ (-π[,]𝑑)) = (𝑠 ∈ (-π[,]𝑑) ↦ (𝑈𝑠)))
17962sselda 3967 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ (-π[,]π))
18015, 16, 28, 39, 40fourierdlem9 42450 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐻:(-π[,]π)⟶ℝ)
181180ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝐻:(-π[,]π)⟶ℝ)
182181, 179ffvelrnd 6852 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐻𝑠) ∈ ℝ)
18341fourierdlem43 42484 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐾:(-π[,]π)⟶ℝ
184183a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝐾:(-π[,]π)⟶ℝ)
185184, 179ffvelrnd 6852 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) ∈ ℝ)
186182, 185remulcld 10671 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
18742fvmpt2 6779 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
188179, 186, 187syl2anc 586 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
18911a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ∈ ℝ)
19013adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 ∈ ℝ)
191 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ (-π[,]𝑑))
192 eliccre 41830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((-π ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℝ)
193189, 190, 191, 192syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℝ)
194 0red 10644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 0 ∈ ℝ)
19552a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ∈ ℝ*)
196190rexrd 10691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 ∈ ℝ*)
197 iccleub 12793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((-π ∈ ℝ*𝑑 ∈ ℝ*𝑠 ∈ (-π[,]𝑑)) → 𝑠𝑑)
198195, 196, 191, 197syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠𝑑)
19955adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 < 0)
200193, 190, 194, 198, 199lelttrd 10798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 < 0)
201193, 200ltned 10776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ≠ 0)
202201adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ≠ 0)
203202neneqd 3021 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 𝑠 = 0)
204203iffalsed 4478 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
205193, 194, 200ltnsymd 10789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 0 < 𝑠)
206205adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 0 < 𝑠)
207206iffalsed 4478 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
208207oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − 𝑊))
209208oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
210204, 209eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
21115ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝐹:ℝ⟶ℝ)
21216ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑋 ∈ ℝ)
213 iccssre 12819 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
21411, 10, 213mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (-π[,]π) ⊆ ℝ
215214, 179sseldi 3965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℝ)
216212, 215readdcld 10670 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑋 + 𝑠) ∈ ℝ)
217211, 216ffvelrnd 6852 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
21839ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑊 ∈ ℝ)
219217, 218resubcld 11068 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐹‘(𝑋 + 𝑠)) − 𝑊) ∈ ℝ)
220219, 215, 202redivcld 11468 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) ∈ ℝ)
221210, 220eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ)
22240fvmpt2 6779 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
223179, 221, 222syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
224223, 204, 2093eqtrd 2860 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
22510a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → π ∈ ℝ)
226225renegcld 11067 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ∈ ℝ)
227 iccgelb 12794 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((-π ∈ ℝ*𝑑 ∈ ℝ*𝑠 ∈ (-π[,]𝑑)) → -π ≤ 𝑠)
228195, 196, 191, 227syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ≤ 𝑠)
22958adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 < π)
230193, 190, 225, 198, 229lelttrd 10798 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 < π)
231193, 225, 230ltled 10788 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ≤ π)
232226, 225, 193, 228, 231eliccd 41828 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ (-π[,]π))
233201neneqd 3021 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 𝑠 = 0)
234233iffalsed 4478 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
235101a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ∈ ℝ)
236193rehalfcld 11885 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / 2) ∈ ℝ)
237236resincld 15496 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ∈ ℝ)
238235, 237remulcld 10671 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
239 2cn 11713 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 ∈ ℂ
240239a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ∈ ℂ)
241193recnd 10669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℂ)
242241halfcld 11883 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / 2) ∈ ℂ)
243242sincld 15483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ∈ ℂ)
244 2ne0 11742 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 ≠ 0
245244a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ≠ 0)
246 fourierdlem44 42485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
247232, 201, 246syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ≠ 0)
248240, 243, 245, 247mulne0d 11292 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
249193, 238, 248redivcld 11468 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
250234, 249eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
25141fvmpt2 6779 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
252232, 250, 251syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
253252adantll 712 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
254224, 253oveq12d 7174 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
255203iffalsed 4478 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
256255oveq2d 7172 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
257188, 254, 2563eqtrd 2860 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑈𝑠) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
258257mpteq2dva 5161 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑠 ∈ (-π[,]𝑑) ↦ (𝑈𝑠)) = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
25965, 178, 2583eqtrd 2860 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂 = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
260259adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑂 = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
261260reseq1d 5852 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
26215adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐹:ℝ⟶ℝ)
26316adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑋 ∈ ℝ)
264 fourierdlem103.p . . . . . . . . . . . . . . . . . 18 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
265 fourierdlem103.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℕ)
266265adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑀 ∈ ℕ)
267 fourierdlem103.v . . . . . . . . . . . . . . . . . . 19 (𝜑𝑉 ∈ (𝑃𝑀))
268267adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑉 ∈ (𝑃𝑀))
269 fourierdlem103.fcn . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
270269adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
271 fourierdlem103.r . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
272271adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
273 fourierdlem103.l . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
274273adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
275106adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → -π < 𝑑)
27652a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ ℝ*)
27753a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 0 ∈ ℝ*)
27855adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 < 0)
279276, 14, 277, 278gtnelicc 41824 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → ¬ 0 ∈ (-π[,]𝑑))
28039adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑊 ∈ ℝ)
281 eqid 2821 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
282 eqid 2821 . . . . . . . . . . . . . . . . . 18 (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2)))))
283 eqid 2821 . . . . . . . . . . . . . . . . . 18 (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2)))))
284 fveq2 6670 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑄𝑙) = (𝑄𝑖))
285 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑖 → (𝑙 + 1) = (𝑖 + 1))
286285fveq2d 6674 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑄‘(𝑙 + 1)) = (𝑄‘(𝑖 + 1)))
287284, 286oveq12d 7174 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑖 → ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
288287sseq2d 3999 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑖 → (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))) ↔ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
289288cbvriotavw 7124 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) = (𝑖 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
290262, 263, 264, 266, 268, 270, 272, 274, 12, 14, 275, 62, 279, 280, 281, 80, 73, 68, 127, 282, 283, 289fourierdlem86 42526 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) ∧ (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘))) ∧ ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ)))
291290simprd 498 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
292261, 291eqeltrd 2913 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
293290simpld 497 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) ∧ (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘))))
294293simpld 497 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
295260eqcomd 2827 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = 𝑂)
296295reseq1d 5852 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
297296oveq1d 7171 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) = ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
298294, 297eleqtrd 2915 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
299293simprd 498 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
300296oveq1d 7171 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)) = ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
301299, 300eleqtrd 2915 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
302 eqid 2821 . . . . . . . . . . . . . . 15 (ℝ D 𝑂) = (ℝ D 𝑂)
30367adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑂:(-π[,]𝑑)⟶ℂ)
30411a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π ∈ ℝ)
30514ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ∈ ℝ)
306 elioore 12769 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) → 𝑠 ∈ ℝ)
307306adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ℝ)
30862, 214sstrdi 3979 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑 ∈ (-π(,)0)) → (-π[,]𝑑) ⊆ ℝ)
309308adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (-π[,]𝑑) ⊆ ℝ)
310152adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐽:(0...𝑁)⟶(-π[,]𝑑))
311310, 171ffvelrnd 6852 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ (-π[,]𝑑))
312309, 311sseldd 3968 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ ℝ)
313312adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) ∈ ℝ)
31452a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ*)
31514adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ∈ ℝ)
316315rexrd 10691 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ∈ ℝ*)
317 iccgelb 12794 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ*𝑑 ∈ ℝ* ∧ (𝐽𝑘) ∈ (-π[,]𝑑)) → -π ≤ (𝐽𝑘))
318314, 316, 311, 317syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ≤ (𝐽𝑘))
319318adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π ≤ (𝐽𝑘))
320313rexrd 10691 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) ∈ ℝ*)
321310, 173ffvelrnd 6852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ (-π[,]𝑑))
322309, 321sseldd 3968 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ ℝ)
323322rexrd 10691 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ ℝ*)
324323adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ∈ ℝ*)
325 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
326 ioogtlb 41819 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝑘) ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ ℝ*𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) < 𝑠)
327320, 324, 325, 326syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) < 𝑠)
328304, 313, 307, 319, 327lelttrd 10798 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π < 𝑠)
329304, 307, 328ltled 10788 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π ≤ 𝑠)
330322adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ∈ ℝ)
331 iooltub 41835 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝑘) ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ ℝ*𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < (𝐽‘(𝑘 + 1)))
332320, 324, 325, 331syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < (𝐽‘(𝑘 + 1)))
333 iccleub 12793 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ*𝑑 ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ (-π[,]𝑑)) → (𝐽‘(𝑘 + 1)) ≤ 𝑑)
334314, 316, 321, 333syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ≤ 𝑑)
335334adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ≤ 𝑑)
336307, 330, 305, 332, 335ltletrd 10800 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < 𝑑)
337307, 305, 336ltled 10788 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠𝑑)
338304, 305, 307, 329, 337eliccd 41828 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ (-π[,]𝑑))
339338ralrimiva 3182 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))𝑠 ∈ (-π[,]𝑑))
340 dfss3 3956 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]𝑑) ↔ ∀𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))𝑠 ∈ (-π[,]𝑑))
341339, 340sylibr 236 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]𝑑))
342303, 341feqresmpt 6734 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑂𝑠)))
343 simplll 773 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝜑)
344 simpllr 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ∈ (-π(,)0))
34564fveq1i 6671 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑂𝑠) = ((𝑈 ↾ (-π[,]𝑑))‘𝑠)
346345a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑂𝑠) = ((𝑈 ↾ (-π[,]𝑑))‘𝑠))
347 fvres 6689 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (-π[,]𝑑) → ((𝑈 ↾ (-π[,]𝑑))‘𝑠) = (𝑈𝑠))
348347adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝑈 ↾ (-π[,]𝑑))‘𝑠) = (𝑈𝑠))
349253, 255eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
350224, 349oveq12d 7174 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
351219recnd 10669 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐹‘(𝑋 + 𝑠)) − 𝑊) ∈ ℂ)
352241adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℂ)
353239a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ∈ ℂ)
354352halfcld 11883 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / 2) ∈ ℂ)
355354sincld 15483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ∈ ℂ)
356353, 355mulcld 10661 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
357248adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
358351, 352, 356, 202, 357dmdcan2d 11446 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
359188, 350, 3583eqtrd 2860 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
360346, 348, 3593eqtrd 2860 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑂𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
361343, 344, 338, 360syl21anc 835 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑂𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
362343, 344, 338, 358syl21anc 835 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
363362eqcomd 2827 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
364 eqidd 2822 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡)) = (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡)))
365 oveq2 7164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑠 → (𝑋 + 𝑡) = (𝑋 + 𝑠))
366365fveq2d 6674 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑠 → (𝐹‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑠)))
367366oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠 → ((𝐹‘(𝑋 + 𝑡)) − 𝑊) = ((𝐹‘(𝑋 + 𝑠)) − 𝑊))
368 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠𝑡 = 𝑠)
369367, 368oveq12d 7174 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
370369adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∧ 𝑡 = 𝑠) → (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
371 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
372 ovex 7189 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) ∈ V
373372a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) ∈ V)
374364, 370, 371, 373fvmptd 6775 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
375 eqidd 2822 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))) = (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))))
376 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑠 → (𝑡 / 2) = (𝑠 / 2))
377376fveq2d 6674 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑠 → (sin‘(𝑡 / 2)) = (sin‘(𝑠 / 2)))
378377oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠 → (2 · (sin‘(𝑡 / 2))) = (2 · (sin‘(𝑠 / 2))))
379368, 378oveq12d 7174 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (𝑡 / (2 · (sin‘(𝑡 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
380379adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∧ 𝑡 = 𝑠) → (𝑡 / (2 · (sin‘(𝑡 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
381 ovex 7189 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V
382381a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V)
383375, 380, 371, 382fvmptd 6775 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
384374, 383oveq12d 7174 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
385384eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
386385adantllr 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
387361, 363, 3863eqtrd 2860 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑂𝑠) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
388387mpteq2dva 5161 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑂𝑠)) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))))
389342, 388eqtr2d 2857 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))) = (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
390389oveq2d 7172 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))) = (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
39144a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ℝ ⊆ ℂ)
392341, 309sstrd 3977 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ℝ)
39322tgioo2 23411 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
39422, 393dvres 24509 . . . . . . . . . . . . . . . . . 18 (((ℝ ⊆ ℂ ∧ 𝑂:(-π[,]𝑑)⟶ℂ) ∧ ((-π[,]𝑑) ⊆ ℝ ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ℝ)) → (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
395391, 303, 309, 392, 394syl22anc 836 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
396 ioontr 41836 . . . . . . . . . . . . . . . . . . 19 ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))
397396a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
398397reseq2d 5853 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
399390, 395, 3983eqtrrd 2861 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))))
40015ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ)
40116ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ)
402265ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
403267ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑉 ∈ (𝑃𝑀))
404 fourierdlem103.fdvcn . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
405404ad4ant14 750 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
40662adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (-π[,]𝑑) ⊆ (-π[,]π))
407341, 406sstrd 3977 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]π))
408312rexrd 10691 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ ℝ*)
40953a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 ∈ ℝ*)
410 0red 10644 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 ∈ ℝ)
41155ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 < 0)
412322, 315, 410, 334, 411lelttrd 10798 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) < 0)
413408, 322, 409, 412gtnelicc 41824 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))))
41439ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑊 ∈ ℝ)
41511a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ)
416106ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π < 𝑑)
417 simpr 487 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0..^𝑁))
418 biid 263 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑣 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑣)(,)(𝑄‘(𝑣 + 1)))) ↔ ((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑣 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑣)(,)(𝑄‘(𝑣 + 1)))))
419401, 264, 402, 403, 415, 315, 416, 406, 80, 73, 68, 127, 417, 289, 418fourierdlem50 42490 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) ∈ (0..^𝑀) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)))))
420419simpld 497 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) ∈ (0..^𝑀))
421419simprd 498 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))))
422369cbvmptv 5169 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡)) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
423379cbvmptv 5169 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
424 eqid 2821 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
425400, 401, 264, 402, 403, 405, 312, 322, 176, 407, 413, 414, 80, 420, 421, 422, 423, 424fourierdlem72 42512 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
426399, 425eqeltrd 2913 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
427 eqid 2821 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
428 eqid 2821 . . . . . . . . . . . . . . . . 17 ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) = ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))
429 fourierdlem103.1 . . . . . . . . . . . . . . . . . . . 20 𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
430429, 420eqeltrid 2917 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ (0..^𝑀))
431 simpll 765 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝜑)
432431, 430jca 514 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝜑𝐶 ∈ (0..^𝑀)))
433 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (𝑖 ∈ (0..^𝑀) ↔ 𝐶 ∈ (0..^𝑀)))
434433anbi2d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝐶 ∈ (0..^𝑀))))
435 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → (𝑉𝑖) = (𝑉𝐶))
436 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝐶 → (𝑖 + 1) = (𝐶 + 1))
437436fveq2d 6674 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → (𝑉‘(𝑖 + 1)) = (𝑉‘(𝐶 + 1)))
438435, 437oveq12d 7174 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝐶 → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
439 raleq 3405 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
440438, 439syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
441440rexbidv 3297 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → (∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
442434, 441imbi12d 347 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)))
443 fourierdlem103.fbdioo . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
444442, 443vtoclg 3567 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
445430, 432, 444sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
446 nfv 1915 . . . . . . . . . . . . . . . . . . . . . 22 𝑡((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁))
447 nfra1 3219 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤
448446, 447nfan 1900 . . . . . . . . . . . . . . . . . . . . 21 𝑡(((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
449 simplr 767 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
45011a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → -π ∈ ℝ)
451450, 16readdcld 10670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (-π + 𝑋) ∈ ℝ)
45210a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → π ∈ ℝ)
453452, 16readdcld 10670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (π + 𝑋) ∈ ℝ)
454451, 453iccssred 41829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
455 ressxr 10685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ℝ ⊆ ℝ*
456454, 455sstrdi 3979 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ*)
457456ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ*)
458264, 402, 403fourierdlem15 42456 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)))
459 elfzofz 13054 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐶 ∈ (0..^𝑀) → 𝐶 ∈ (0...𝑀))
460430, 459syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ (0...𝑀))
461458, 460ffvelrnd 6852 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ((-π + 𝑋)[,](π + 𝑋)))
462457, 461sseldd 3968 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ℝ*)
463462adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) ∈ ℝ*)
464 fzofzp1 13135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐶 ∈ (0..^𝑀) → (𝐶 + 1) ∈ (0...𝑀))
465430, 464syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐶 + 1) ∈ (0...𝑀))
466458, 465ffvelrnd 6852 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ((-π + 𝑋)[,](π + 𝑋)))
467457, 466sseldd 3968 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ℝ*)
468467adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉‘(𝐶 + 1)) ∈ ℝ*)
469 elioore 12769 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → 𝑡 ∈ ℝ)
470469adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ℝ)
47110a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → π ∈ ℝ)
472415, 471, 401, 264, 402, 403, 460, 80fourierdlem13 42454 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄𝐶) = ((𝑉𝐶) − 𝑋) ∧ (𝑉𝐶) = (𝑋 + (𝑄𝐶))))
473472simprd 498 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) = (𝑋 + (𝑄𝐶)))
474473adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) = (𝑋 + (𝑄𝐶)))
475454ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
476475, 461sseldd 3968 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ℝ)
477476adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) ∈ ℝ)
478474, 477eqeltrrd 2914 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) ∈ ℝ)
479401, 312readdcld 10670 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽𝑘)) ∈ ℝ)
480479adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) ∈ ℝ)
481472simpld 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) = ((𝑉𝐶) − 𝑋))
482476, 401resubcld 11068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑉𝐶) − 𝑋) ∈ ℝ)
483481, 482eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) ∈ ℝ)
484415, 471, 401, 264, 402, 403, 465, 80fourierdlem13 42454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄‘(𝐶 + 1)) = ((𝑉‘(𝐶 + 1)) − 𝑋) ∧ (𝑉‘(𝐶 + 1)) = (𝑋 + (𝑄‘(𝐶 + 1)))))
485484simpld 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘(𝐶 + 1)) = ((𝑉‘(𝐶 + 1)) − 𝑋))
486475, 466sseldd 3968 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ℝ)
487486, 401resubcld 11068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑉‘(𝐶 + 1)) − 𝑋) ∈ ℝ)
488485, 487eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘(𝐶 + 1)) ∈ ℝ)
489429eqcomi 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) = 𝐶
490489fveq2i 6673 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))) = (𝑄𝐶)
491489oveq1i 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1) = (𝐶 + 1)
492491fveq2i 6673 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)) = (𝑄‘(𝐶 + 1))
493490, 492oveq12i 7168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))) = ((𝑄𝐶)(,)(𝑄‘(𝐶 + 1)))
494421, 493sseqtrdi 4017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝐶)(,)(𝑄‘(𝐶 + 1))))
495483, 488, 312, 322, 176, 494fourierdlem10 42451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄𝐶) ≤ (𝐽𝑘) ∧ (𝐽‘(𝑘 + 1)) ≤ (𝑄‘(𝐶 + 1))))
496495simpld 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) ≤ (𝐽𝑘))
497483, 312, 401, 496leadd2dd 11255 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄𝐶)) ≤ (𝑋 + (𝐽𝑘)))
498497adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) ≤ (𝑋 + (𝐽𝑘)))
499480rexrd 10691 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) ∈ ℝ*)
500401, 322readdcld 10670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ)
501500rexrd 10691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*)
502501adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*)
503 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))
504 ioogtlb 41819 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 + (𝐽𝑘)) ∈ ℝ* ∧ (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) < 𝑡)
505499, 502, 503, 504syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) < 𝑡)
506478, 480, 470, 498, 505lelttrd 10798 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) < 𝑡)
507474, 506eqbrtrd 5088 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) < 𝑡)
508500adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ)
509484simprd 498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) = (𝑋 + (𝑄‘(𝐶 + 1))))
510509, 486eqeltrrd 2914 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄‘(𝐶 + 1))) ∈ ℝ)
511510adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄‘(𝐶 + 1))) ∈ ℝ)
512 iooltub 41835 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 + (𝐽𝑘)) ∈ ℝ* ∧ (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝐽‘(𝑘 + 1))))
513499, 502, 503, 512syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝐽‘(𝑘 + 1))))
514495simprd 498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ≤ (𝑄‘(𝐶 + 1)))
515322, 488, 401, 514leadd2dd 11255 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ≤ (𝑋 + (𝑄‘(𝐶 + 1))))
516515adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ≤ (𝑋 + (𝑄‘(𝐶 + 1))))
517470, 508, 511, 513, 516ltletrd 10800 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝑄‘(𝐶 + 1))))
518509eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄‘(𝐶 + 1))) = (𝑉‘(𝐶 + 1)))
519518adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄‘(𝐶 + 1))) = (𝑉‘(𝐶 + 1)))
520517, 519breqtrd 5092 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑉‘(𝐶 + 1)))
521463, 468, 470, 507, 520eliood 41822 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
522521adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
523 rspa 3206 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
524449, 522, 523syl2anc 586 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
525524ex 415 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) → (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤))
526448, 525ralrimi 3216 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
527526ex 415 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
528527reximdv 3273 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
529445, 528mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
530438raleqdv 3415 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
531530rexbidv 3297 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
532434, 531imbi12d 347 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)))
533 fourierdlem103.fdvbd . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
534532, 533vtoclg 3567 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
535430, 432, 534sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
536 nfra1 3219 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
537446, 536nfan 1900 . . . . . . . . . . . . . . . . . . . . 21 𝑡(((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
53815, 45fssd 6528 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐹:ℝ⟶ℂ)
539 ssid 3989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ℝ ⊆ ℝ
540539a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ℝ ⊆ ℝ)
541 ioossre 12799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ
542541a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)
54322, 393dvres 24509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
54445, 538, 540, 542, 543syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
545 ioontr 41836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))
546545reseq2i 5850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))
547546a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
548544, 547eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
549548fveq1d 6672 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))‘𝑡))
550 fvres 6689 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
551549, 550sylan9eq 2876 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
552551ad4ant14 750 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
553552fveq2d 6674 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
554553adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
555 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
556521adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
557 rspa 3206 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
558555, 556, 557syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
559554, 558eqbrtrd 5088 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
560559ex 415 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
561537, 560ralrimi 3216 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
562561ex 415 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
563562reximdv 3273 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
564535, 563mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
565415rexrd 10691 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ*)
566565, 316, 310, 417fourierdlem8 42449 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ⊆ (-π[,]𝑑))
567126ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝑁 ∈ ℕ)
568152, 308fssd 6528 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐽:(0...𝑁)⟶ℝ)
569568ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝐽:(0...𝑁)⟶ℝ)
570 simpr 487 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) → 𝑟 ∈ (-π[,]𝑑))
571153eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → -π = (𝐽‘0))
572154eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 = (𝐽𝑁))
573571, 572oveq12d 7174 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (-π[,]𝑑) = ((𝐽‘0)[,](𝐽𝑁)))
574573adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) → (-π[,]𝑑) = ((𝐽‘0)[,](𝐽𝑁)))
575570, 574eleqtrd 2915 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) → 𝑟 ∈ ((𝐽‘0)[,](𝐽𝑁)))
576575adantr 483 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝑟 ∈ ((𝐽‘0)[,](𝐽𝑁)))
577 simpr 487 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → ¬ 𝑟 ∈ ran 𝐽)
578 fveq2 6670 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → (𝐽𝑗) = (𝐽𝑘))
579578breq1d 5076 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑘 → ((𝐽𝑗) < 𝑟 ↔ (𝐽𝑘) < 𝑟))
580579cbvrabv 3491 . . . . . . . . . . . . . . . . . . 19 {𝑗 ∈ (0..^𝑁) ∣ (𝐽𝑗) < 𝑟} = {𝑘 ∈ (0..^𝑁) ∣ (𝐽𝑘) < 𝑟}
581580supeq1i 8911 . . . . . . . . . . . . . . . . . 18 sup({𝑗 ∈ (0..^𝑁) ∣ (𝐽𝑗) < 𝑟}, ℝ, < ) = sup({𝑘 ∈ (0..^𝑁) ∣ (𝐽𝑘) < 𝑟}, ℝ, < )
582567, 569, 576, 577, 581fourierdlem25 42466 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → ∃𝑚 ∈ (0..^𝑁)𝑟 ∈ ((𝐽𝑚)(,)(𝐽‘(𝑚 + 1))))
583546a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
584538ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
585539a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ℝ ⊆ ℝ)
586541a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)
587391, 584, 585, 586, 543syl22anc 836 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
588521ralrimiva 3182 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
589 dfss3 3956 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
590588, 589sylibr 236 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
591590resabs1d 5884 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
592583, 587, 5913eqtr4rd 2867 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
593 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐶 ∈ (0..^𝑀)) → 𝐶 ∈ (0..^𝑀))
594 id 22 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐶 ∈ (0..^𝑀)) → (𝜑𝐶 ∈ (0..^𝑀)))
595438reseq2d 5853 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))))
596595, 438feq12d 6502 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝐶 → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ ↔ ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ))
597434, 596imbi12d 347 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)))
598 cncff 23501 . . . . . . . . . . . . . . . . . . . . . . 23 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
599404, 598syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
600597, 599vtoclg 3567 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ))
601593, 594, 600sylc 65 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)
602432, 601syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)
603602, 590fssresd 6545 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))):((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))⟶ℝ)
604592, 603feq1dd 41472 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))):((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))⟶ℝ)
605367, 378oveq12d 7174 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / (2 · (sin‘(𝑡 / 2)))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
606605cbvmptv 5169 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / (2 · (sin‘(𝑡 / 2))))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
607 biid 263 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ↔ ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ))
608 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 𝑡 → (𝐹𝑟) = (𝐹𝑡))
609608fveq2d 6674 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑡 → (abs‘(𝐹𝑟)) = (abs‘(𝐹𝑡)))
610609breq1d 5076 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑡 → ((abs‘(𝐹𝑟)) ≤ 𝑤 ↔ (abs‘(𝐹𝑡)) ≤ 𝑤))
611610cbvralvw 3449 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
612607, 611anbi12i 628 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤) ↔ (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
613 fveq2 6670 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑡 → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟) = ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡))
614613fveq2d 6674 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑡 → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)))
615614breq1d 5076 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑡 → ((abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧 ↔ (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
616615cbvralvw 3449 . . . . . . . . . . . . . . . . . 18 (∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧 ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
617612, 616anbi12i 628 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧) ↔ ((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
618262, 263, 12, 14, 62, 279, 280, 427, 428, 529, 564, 152, 176, 566, 582, 604, 606, 617fourierdlem80 42520 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
619358mpteq2dva 5161 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
620259, 619eqtrd 2856 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂 = (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
621620oveq2d 7172 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (ℝ D 𝑂) = (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))))
622621dmeqd 5774 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → dom (ℝ D 𝑂) = dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))))
623 nfcv 2977 . . . . . . . . . . . . . . . . . . . 20 𝑠dom (ℝ D 𝑂)
624 nfcv 2977 . . . . . . . . . . . . . . . . . . . . . 22 𝑠
625 nfcv 2977 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 D
626 nfmpt1 5164 . . . . . . . . . . . . . . . . . . . . . 22 𝑠(𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
627624, 625, 626nfov 7186 . . . . . . . . . . . . . . . . . . . . 21 𝑠(ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
628627nfdm 5823 . . . . . . . . . . . . . . . . . . . 20 𝑠dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
629623, 628raleqf 3397 . . . . . . . . . . . . . . . . . . 19 (dom (ℝ D 𝑂) = dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
630622, 629syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
631621fveq1d 6672 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → ((ℝ D 𝑂)‘𝑠) = ((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠))
632631fveq2d 6674 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)))
633632breq1d 5076 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ (abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
634633ralbidv 3197 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → (∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
635630, 634bitrd 281 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
636635rexbidv 3297 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
637618, 636mpbird 259 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
638 eqid 2821 . . . . . . . . . . . . . . 15 (𝑙 ∈ ℝ+ ↦ ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (𝑙 ∈ ℝ+ ↦ ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
639 eqeq1 2825 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (𝑡 = (𝐽𝑘) ↔ 𝑠 = (𝐽𝑘)))
640 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑙 → (𝑄) = (𝑄𝑙))
641 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ( = 𝑙 → ( + 1) = (𝑙 + 1))
642641fveq2d 6674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑙 → (𝑄‘( + 1)) = (𝑄‘(𝑙 + 1)))
643640, 642oveq12d 7174 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ( = 𝑙 → ((𝑄)(,)(𝑄‘( + 1))) = ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
644643sseq2d 3999 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ( = 𝑙 → (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))) ↔ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))
645644cbvriotavw 7124 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
646645fveq2i 6673 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))
647646eqeq2i 2834 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) ↔ (𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))))
648647a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) ↔ (𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))))
649 csbeq1 3886 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅)
650645, 649ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅
651650a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅)
652648, 651ifbieq1d 4490 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) = if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))))
653652mptru 1544 . . . . . . . . . . . . . . . . . . . . 21 if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) = if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘))))
654653oveq1i 7166 . . . . . . . . . . . . . . . . . . . 20 (if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) = (if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊)
655654oveq1i 7166 . . . . . . . . . . . . . . . . . . 19 ((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) = ((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘))
656655oveq1i 7166 . . . . . . . . . . . . . . . . . 18 (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2)))))
657656a1i 11 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))))
658 eqeq1 2825 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝑡 = (𝐽‘(𝑘 + 1)) ↔ 𝑠 = (𝐽‘(𝑘 + 1))))
659645oveq1i 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1) = ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)
660659fveq2i 6673 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))
661660eqeq2i 2834 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) ↔ (𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)))
662661a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) ↔ (𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))))
663 csbeq1 3886 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿)
664645, 663ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿
665664a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿)
666662, 665ifbieq1d 4490 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) = if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))))
667666mptru 1544 . . . . . . . . . . . . . . . . . . . . . 22 if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) = if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1)))))
668667oveq1i 7166 . . . . . . . . . . . . . . . . . . . . 21 (if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) = (if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊)
669668oveq1i 7166 . . . . . . . . . . . . . . . . . . . 20 ((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) = ((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1)))
670669oveq1i 7166 . . . . . . . . . . . . . . . . . . 19 (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2)))))
671670a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))))
672 fveq2 6670 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝑂𝑡) = (𝑂𝑠))
673658, 671, 672ifbieq12d 4494 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡)) = if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠)))
674639, 657, 673ifbieq12d 4494 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → if(𝑡 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡))) = if(𝑠 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠))))
675674cbvmptv 5169 . . . . . . . . . . . . . . 15 (𝑡 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ↦ if(𝑡 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡)))) = (𝑠 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ↦ if(𝑠 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠))))
67612, 14, 67, 126, 152, 153, 154, 176, 292, 298, 301, 302, 426, 637, 638, 675fourierdlem73 42513 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (-π(,)0)) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒)
677 breq2 5070 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑎 → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎))
678677rexralbidv 3301 . . . . . . . . . . . . . . 15 (𝑒 = 𝑎 → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎))
679678cbvralvw 3449 . . . . . . . . . . . . . 14 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
680676, 679sylib 220 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ (-π(,)0)) → ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
681680adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
682 rphalfcl 12417 . . . . . . . . . . . . 13 (𝑒 ∈ ℝ+ → (𝑒 / 2) ∈ ℝ+)
683682ad2antlr 725 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → (𝑒 / 2) ∈ ℝ+)
684 breq2 5070 . . . . . . . . . . . . . 14 (𝑎 = (𝑒 / 2) → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ↔ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
685684rexralbidv 3301 . . . . . . . . . . . . 13 (𝑎 = (𝑒 / 2) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ↔ ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
686685rspccva 3622 . . . . . . . . . . . 12 ((∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ∧ (𝑒 / 2) ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
687681, 683, 686syl2anc 586 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
688345a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → (𝑂𝑠) = ((𝑈 ↾ (-π[,]𝑑))‘𝑠))
689140a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → (-π(,)𝑑) ⊆ (-π[,]𝑑))
690689sselda 3967 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → 𝑠 ∈ (-π[,]𝑑))
691690, 347syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → ((𝑈 ↾ (-π[,]𝑑))‘𝑠) = (𝑈𝑠))
692688, 691eqtr2d 2857 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → (𝑈𝑠) = (𝑂𝑠))
693692oveq1d 7171 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑂𝑠) · (sin‘(𝑙 · 𝑠))))
694693itgeq2dv 24382 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
695694adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
696695fveq2d 6674 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠))
697 simpr 487 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
698696, 697eqbrtrd 5088 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
699698ex 415 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (-π(,)0)) → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
700699adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
701700ralimdv 3178 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
702701reximdv 3273 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
703687, 702mpd 15 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
704703adantr 483 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
705 nfv 1915 . . . . . . . . . . . . . . 15 𝑘((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0))
706 nfra1 3219 . . . . . . . . . . . . . . 15 𝑘𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)
707705, 706nfan 1900 . . . . . . . . . . . . . 14 𝑘(((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
708 nfv 1915 . . . . . . . . . . . . . 14 𝑘 𝑗 ∈ ℕ
709707, 708nfan 1900 . . . . . . . . . . . . 13 𝑘((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ)
710 nfv 1915 . . . . . . . . . . . . 13 𝑘𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)
711709, 710nfan 1900 . . . . . . . . . . . 12 𝑘(((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
712 simpll 765 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)))
713 eluznn 12319 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
714713adantll 712 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
715712, 714jca 514 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ))
716715adantllr 717 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ))
717 simpllr 774 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
718713adantll 712 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
719 rspa 3206 . . . . . . . . . . . . . . . . . . 19 ((∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ∧ 𝑘 ∈ ℕ) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
720717, 718, 719syl2anc 586 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
721716, 720jca 514 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
722721adantlr 713 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
723 nnre 11645 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
724723rexrd 10691 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ*)
725724adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ*)
72623a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → +∞ ∈ ℝ*)
727 eluzelre 12255 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℝ)
728 1re 10641 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℝ
729728rehalfcli 11887 . . . . . . . . . . . . . . . . . . . . . . 23 (1 / 2) ∈ ℝ
730729a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (ℤ𝑗) → (1 / 2) ∈ ℝ)
731727, 730readdcld 10670 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑗) → (𝑘 + (1 / 2)) ∈ ℝ)
732731adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ ℝ)
733723adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ)
734727adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ)
735 eluzle 12257 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (ℤ𝑗) → 𝑗𝑘)
736735adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗𝑘)
737 halfgt0 11854 . . . . . . . . . . . . . . . . . . . . . . 23 0 < (1 / 2)
738737a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 0 < (1 / 2))
739729a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (1 / 2) ∈ ℝ)
740739, 734ltaddposd 11224 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (0 < (1 / 2) ↔ 𝑘 < (𝑘 + (1 / 2))))
741738, 740mpbid 234 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 < (𝑘 + (1 / 2)))
742733, 734, 732, 736, 741lelttrd 10798 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 < (𝑘 + (1 / 2)))
743732ltpnfd 12517 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) < +∞)
744725, 726, 732, 742, 743eliood 41822 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ (𝑗(,)+∞))
745744adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ (𝑗(,)+∞))
746 simplr 767 . . . . . . . . . . . . . . . . . 18 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
747 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑙 = (𝑘 + (1 / 2)) → (𝑙 · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
748747fveq2d 6674 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 = (𝑘 + (1 / 2)) → (sin‘(𝑙 · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
749748oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = (𝑘 + (1 / 2)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
750749adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑙 = (𝑘 + (1 / 2)) ∧ 𝑠 ∈ (-π(,)𝑑)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
751750itgeq2dv 24382 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = (𝑘 + (1 / 2)) → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
752751fveq2d 6674 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = (𝑘 + (1 / 2)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
753752breq1d 5076 . . . . . . . . . . . . . . . . . . 19 (𝑙 = (𝑘 + (1 / 2)) → ((abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
754753rspcv 3618 . . . . . . . . . . . . . . . . . 18 ((𝑘 + (1 / 2)) ∈ (𝑗(,)+∞) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
755745, 746, 754sylc 65 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
756755adantlll 716 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
757722, 756jca 514 . . . . . . . . . . . . . . 15 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
758 fourierdlem103.ch . . . . . . . . . . . . . . 15 (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
759757, 758sylibr 236 . . . . . . . . . . . . . 14 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜒)
76011a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → -π ∈ ℝ)
761 0red 10644 . . . . . . . . . . . . . . . . . 18 (𝜒 → 0 ∈ ℝ)
762 ioossicc 12823 . . . . . . . . . . . . . . . . . . 19 (-π(,)0) ⊆ (-π[,]0)
763758biimpi 218 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
764 simp-4r 782 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑑 ∈ (-π(,)0))
765763, 764syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑑 ∈ (-π(,)0))
766762, 765sseldi 3965 . . . . . . . . . . . . . . . . . 18 (𝜒𝑑 ∈ (-π[,]0))
767 simp-5l 783 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝜑)
768763, 767syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝜑)
76943adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑈:(-π[,]π)⟶ℝ)
77010rexri 10699 . . . . . . . . . . . . . . . . . . . . . . . . . 26 π ∈ ℝ*
771 0re 10643 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℝ
772771, 10, 56ltleii 10763 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ≤ π
773 iooss2 12775 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π ∈ ℝ* ∧ 0 ≤ π) → (-π(,)0) ⊆ (-π(,)π))
774770, 772, 773mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-π(,)0) ⊆ (-π(,)π)
775 ioossicc 12823 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-π(,)π) ⊆ (-π[,]π)
776774, 775sstri 3976 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π(,)0) ⊆ (-π[,]π)
777776sseli 3963 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ (-π[,]π))
778777adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
779769, 778ffvelrnd 6852 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
780768, 779sylan 582 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
781 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑘 ∈ ℕ)
782763, 781syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑘 ∈ ℕ)
783782nnred 11653 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑘 ∈ ℝ)
784729a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (1 / 2) ∈ ℝ)
785783, 784readdcld 10670 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑘 + (1 / 2)) ∈ ℝ)
786785adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑠 ∈ (-π(,)0)) → (𝑘 + (1 / 2)) ∈ ℝ)
787 elioore 12769 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ ℝ)
788787adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
789786, 788remulcld 10671 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ (-π(,)0)) → ((𝑘 + (1 / 2)) · 𝑠) ∈ ℝ)
790789resincld 15496 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (-π(,)0)) → (sin‘((𝑘 + (1 / 2)) · 𝑠)) ∈ ℝ)
791780, 790remulcld 10671 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
792791recnd 10669 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℂ)
79352a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → -π ∈ ℝ*)
79453a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → 0 ∈ ℝ*)
795760leidd 11206 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → -π ≤ -π)
796 ioossre 12799 . . . . . . . . . . . . . . . . . . . . . 22 (-π(,)0) ⊆ ℝ
797796, 765sseldi 3965 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑑 ∈ ℝ)
798793, 794, 765, 54syl3anc 1367 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑑 < 0)
799797, 761, 798ltled 10788 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑑 ≤ 0)
800 ioossioo 12830 . . . . . . . . . . . . . . . . . . . 20 (((-π ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (-π ≤ -π ∧ 𝑑 ≤ 0)) → (-π(,)𝑑) ⊆ (-π(,)0))
801793, 794, 795, 799, 800syl22anc 836 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (-π(,)𝑑) ⊆ (-π(,)0))
802 ioombl 24166 . . . . . . . . . . . . . . . . . . . 20 (-π(,)𝑑) ∈ dom vol
803802a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (-π(,)𝑑) ∈ dom vol)
804 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → (𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ))
805804anbi2d 630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
806 simpl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → 𝑛 = 𝑘)
807806oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
808807oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
809808fveq2d 6674 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
810809oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
811810mpteq2dva 5161 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))))
812811eleq1d 2897 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → ((𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1 ↔ (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1))
813805, 812imbi12d 347 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1) ↔ ((𝜑𝑘 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)))
814776a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (-π(,)0) ⊆ (-π[,]π))
815 ioombl 24166 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)0) ∈ dom vol
816815a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (-π(,)0) ∈ dom vol)
81743ffvelrnda 6851 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
818817adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
819 nnre 11645 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
820 readdcl 10620 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑛 + (1 / 2)) ∈ ℝ)
821819, 729, 820sylancl 588 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ ℕ → (𝑛 + (1 / 2)) ∈ ℝ)
822821adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑛 + (1 / 2)) ∈ ℝ)
823 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
824214, 823sseldi 3965 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
825822, 824remulcld 10671 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
826825resincld 15496 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
827826adantll 712 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
828818, 827remulcld 10671 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
829 fourierdlem103.g . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
830829a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))))
831 fourierdlem103.s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
832831fvmpt2 6779 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
833823, 826, 832syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
834833adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
835834oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
836835mpteq2dva 5161 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))))
837830, 836eqtr2d 2857 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = 𝐺)
83815adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
839 fourierdlem103.x . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑋 ∈ ran 𝑉)
840839adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ran 𝑉)
84127adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
84238adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
843819adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
844265adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℕ)
845267adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑉 ∈ (𝑃𝑀))
846269adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
847271adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
848273adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
849 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
850 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℝ D 𝐹) = (ℝ D 𝐹)
851599adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
852 fourierdlem103.a . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
853852adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
854 fourierdlem103.b . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
855854adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
856264, 838, 840, 841, 842, 40, 41, 42, 843, 831, 829, 844, 845, 846, 847, 848, 80, 849, 850, 851, 853, 855fourierdlem88 42528 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
857837, 856eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
858814, 816, 828, 857iblss 24405 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
859813, 858chvarvv 2005 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
860768, 782, 859syl2anc 586 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
861801, 803, 791, 860iblss 24405 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑠 ∈ (-π(,)𝑑) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
862765, 106syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → -π < 𝑑)
863760, 797, 862ltled 10788 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → -π ≤ 𝑑)
864761leidd 11206 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → 0 ≤ 0)
865 ioossioo 12830 . . . . . . . . . . . . . . . . . . . 20 (((-π ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (-π ≤ 𝑑 ∧ 0 ≤ 0)) → (𝑑(,)0) ⊆ (-π(,)0))
866793, 794, 863, 864, 865syl22anc 836 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑑(,)0) ⊆ (-π(,)0))
867 ioombl 24166 . . . . . . . . . . . . . . . . . . . 20 (𝑑(,)0) ∈ dom vol
868867a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑑(,)0) ∈ dom vol)
869866, 868, 791, 860iblss 24405 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑠 ∈ (𝑑(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
870760, 761, 766, 792, 861, 869itgsplitioo 24438 . . . . . . . . . . . . . . . . 17 (𝜒 → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = (∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
871801sselda 3967 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (-π(,)𝑑)) → 𝑠 ∈ (-π(,)0))
872871, 791syldan 593 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (-π(,)𝑑)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
873872, 861itgcl 24384 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
874866sselda 3967 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (𝑑(,)0)) → 𝑠 ∈ (-π(,)0))
875874, 791syldan 593 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (𝑑(,)0)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
876875, 869itgcl 24384 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
877873, 876addcomd 10842 . . . . . . . . . . . . . . . . 17 (𝜒 → (∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
878870, 877eqtrd 2856 . . . . . . . . . . . . . . . 16 (𝜒 → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = (∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
879878fveq2d 6674 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)))
880876, 873addcld 10660 . . . . . . . . . . . . . . . . 17 (𝜒 → (∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℂ)
881880abscld 14796 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ∈ ℝ)
882876abscld 14796 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℝ)
883873abscld 14796 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℝ)
884882, 883readdcld 10670 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ∈ ℝ)
885 simp-5r 784 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑒 ∈ ℝ+)
886763, 885syl 17 . . . . . . . . . . . . . . . . 17 (𝜒𝑒 ∈ ℝ+)
887886rpred 12432 . . . . . . . . . . . . . . . 16 (𝜒𝑒 ∈ ℝ)
888876, 873abstrid 14816 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ≤ ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)))
889 simplr 767 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
890763, 889syl 17 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
891763simprd 498 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
892882, 883, 887, 890, 891lt2halvesd 11886 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) < 𝑒)
893881, 884, 887, 888, 892lelttrd 10798 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) < 𝑒)
894879, 893eqbrtrd 5088 . . . . . . . . . . . . . 14 (𝜒 → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
895759, 894syl 17 . . . . . . . . . . . . 13 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
896895ex 415 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (𝑘 ∈ (ℤ𝑗) → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
897711, 896ralrimi 3216 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
898897ex 415 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
899898reximdva 3274 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
900704, 899mpd 15 . . . . . . . 8 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
901 negpilt0 41595 . . . . . . . . . . . . . 14 -π < 0
90211, 771, 10lttri 10766 . . . . . . . . . . . . . 14 ((-π < 0 ∧ 0 < π) → -π < π)
903901, 56, 902mp2an 690 . . . . . . . . . . . . 13 -π < π
90411, 10, 903ltleii 10763 . . . . . . . . . . . 12 -π ≤ π
905904a1i 11 . . . . . . . . . . 11 (𝜑 → -π ≤ π)
906264fourierdlem2 42443 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
907265, 906syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
908267, 907mpbid 234 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
909908simpld 497 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
910 elmapi 8428 . . . . . . . . . . . . . . 15 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
911909, 910syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉:(0...𝑀)⟶ℝ)
912911ffvelrnda 6851 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑉𝑖) ∈ ℝ)
91316adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ)
914912, 913resubcld 11068 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
915914, 80fmptd 6878 . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
91680a1i 11 . . . . . . . . . . . . 13 (𝜑𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)))
917 fveq2 6670 . . . . . . . . . . . . . . 15 (𝑖 = 0 → (𝑉𝑖) = (𝑉‘0))
918917oveq1d 7171 . . . . . . . . . . . . . 14 (𝑖 = 0 → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
919918adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑖 = 0) → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
920265nnnn0d 11956 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ0)
921 nn0uz 12281 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
922920, 921eleqtrdi 2923 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘0))
923 eluzfz1 12915 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
924922, 923syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑀))
925911, 924ffvelrnd 6852 . . . . . . . . . . . . . 14 (𝜑 → (𝑉‘0) ∈ ℝ)
926925, 16resubcld 11068 . . . . . . . . . . . . 13 (𝜑 → ((𝑉‘0) − 𝑋) ∈ ℝ)
927916, 919, 924, 926fvmptd 6775 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) = ((𝑉‘0) − 𝑋))
928908simprd 498 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))
929928simpld 497 . . . . . . . . . . . . . 14 (𝜑 → ((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)))
930929simpld 497 . . . . . . . . . . . . 13 (𝜑 → (𝑉‘0) = (-π + 𝑋))
931930oveq1d 7171 . . . . . . . . . . . 12 (𝜑 → ((𝑉‘0) − 𝑋) = ((-π + 𝑋) − 𝑋))
932450recnd 10669 . . . . . . . . . . . . 13 (𝜑 → -π ∈ ℂ)
93316recnd 10669 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℂ)
934932, 933pncand 10998 . . . . . . . . . . . 12 (𝜑 → ((-π + 𝑋) − 𝑋) = -π)
935927, 931, 9343eqtrd 2860 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) = -π)
936450, 452, 16, 264, 849, 265, 267, 80fourierdlem14 42455 . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀))
937849fourierdlem2 42443 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
938265, 937syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
939936, 938mpbid 234 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
940939simprd 498 . . . . . . . . . . . . 13 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
941940simpld 497 . . . . . . . . . . . 12 (𝜑 → ((𝑄‘0) = -π ∧ (𝑄𝑀) = π))
942941simprd 498 . . . . . . . . . . 11 (𝜑 → (𝑄𝑀) = π)
943940simprd 498 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
944943r19.21bi 3208 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
94515adantr 483 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ)
946849, 265, 936fourierdlem15 42456 . . . . . . . . . . . . . 14 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
947946adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
948 elfzofz 13054 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
949948adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
950947, 949ffvelrnd 6852 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (-π[,]π))
951 fzofzp1 13135 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
952951adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
953947, 952ffvelrnd 6852 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (-π[,]π))
95416adantr 483 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
955 ffn 6514 . . . . . . . . . . . . . . . . . 18 (𝑉:(0...𝑀)⟶ℝ → 𝑉 Fn (0...𝑀))
956909, 910, 9553syl 18 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 Fn (0...𝑀))
957 fvelrnb 6726 . . . . . . . . . . . . . . . . 17 (𝑉 Fn (0...𝑀) → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
958956, 957syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
959839, 958mpbid 234 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋)
960 oveq1 7163 . . . . . . . . . . . . . . . . . . 19 ((𝑉𝑖) = 𝑋 → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
961960adantl 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
962933subidd 10985 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋𝑋) = 0)
963962ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → (𝑋𝑋) = 0)
964961, 963eqtr2d 2857 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → 0 = ((𝑉𝑖) − 𝑋))
965964ex 415 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) = 𝑋 → 0 = ((𝑉𝑖) − 𝑋)))
966965reximdva 3274 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋 → ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋)))
967959, 966mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋))
96880elrnmpt 5828 . . . . . . . . . . . . . . 15 (0 ∈ ℝ → (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋)))
969771, 968ax-mp 5 . . . . . . . . . . . . . 14 (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋))
970967, 969sylibr 236 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ran 𝑄)
971849, 265, 936, 970fourierdlem12 42453 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 0 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
972911adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
973972, 949ffvelrnd 6852 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
974973, 954resubcld 11068 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
97580fvmpt2 6779 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
976949, 974, 975syl2anc 586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
977976oveq1d 7171 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (((𝑉𝑖) − 𝑋) + 𝑋))
978973recnd 10669 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℂ)
979933adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ)
980978, 979npcand 11001 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉𝑖) − 𝑋) + 𝑋) = (𝑉𝑖))
981977, 980eqtrd 2856 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (𝑉𝑖))
982 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑖 → (𝑉𝑗) = (𝑉𝑖))
983982oveq1d 7171 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → ((𝑉𝑗) − 𝑋) = ((𝑉𝑖) − 𝑋))
984983cbvmptv 5169 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
98580, 984eqtr4i 2847 . . . . . . . . . . . . . . . . . . 19 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
986985a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
987 fveq2 6670 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (𝑖 + 1) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
988987oveq1d 7171 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑖 + 1) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
989988adantl 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
990972, 952ffvelrnd 6852 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
991990, 954resubcld 11068 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
992986, 989, 952, 991fvmptd 6775 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
993992oveq1d 7171 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋))
994990recnd 10669 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ)
995994, 979npcand 11001 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋) = (𝑉‘(𝑖 + 1)))
996993, 995eqtrd 2856 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (𝑉‘(𝑖 + 1)))
997981, 996oveq12d 7174 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
998997reseq2d 5853 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) = (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))))
999997oveq1d 7171 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ) = (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
1000269, 998, 9993eltr4d 2928 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) ∈ ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ))
100128adantr 483 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑌 ∈ ℝ)
100239adantr 483 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ℝ)
1003945, 950, 953, 954, 971, 1000, 1001, 1002, 40fourierdlem40 42481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
1004 id 22 . . . . . . . . . . . . . 14 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
100544a1i 11 . . . . . . . . . . . . . 14 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ℝ ⊆ ℂ)
10061004, 1005fssd 6528 . . . . . . . . . . . . 13 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
1007404, 598, 10063syl 18 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
1008 eqid 2821 . . . . . . . . . . . 12 if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) = if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖)))
100916, 264, 15, 839, 27, 39, 40, 265, 267, 271, 80, 849, 850, 1007, 854, 1008fourierdlem75 42515 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
1010 eqid 2821 . . . . . . . . . . . 12 if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) = if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))))
101116, 264, 15, 839, 28, 38, 40, 265, 267, 273, 80, 849, 850, 599, 852, 1010fourierdlem74 42514 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
1012 fveq2 6670 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
1013 oveq1 7163 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1))
10141013fveq2d 6674 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)))
10151012, 1014oveq12d 7174 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
10161015cbvmptv 5169 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) ↦ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
1017450, 452, 905, 180, 265, 915, 935, 942, 944, 1003, 1009, 1011, 1016fourierdlem70 42510 . . . . . . . . . 10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
1018 eqid 2821 . . . . . . . . . 10 ((𝑒 / 3) / 𝑦) = ((𝑒 / 3) / 𝑦)
1019 fveq2 6670 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝐺𝑡) = (𝐺𝑠))
10201019fveq2d 6674 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (abs‘(𝐺𝑡)) = (abs‘(𝐺𝑠)))
10211020breq1d 5076 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → ((abs‘(𝐺𝑡)) ≤ 𝑦 ↔ (abs‘(𝐺𝑠)) ≤ 𝑦))
10221021cbvralvw 3449 . . . . . . . . . . . . . . 15 (∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦 ↔ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦)
10231022ralbii 3165 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦 ↔ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦)
102410233anbi3i 1155 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ↔ ((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦))
10251024anbi1i 625 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ↔ (((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol))
10261025anbi1i 625 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ↔ ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))))
10271026anbi1i 625 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ∧ 𝑛 ∈ ℕ) ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ∧ 𝑛 ∈ ℕ))
102815, 16, 28, 39, 40, 41, 42, 831, 829, 1017, 856, 1018, 1027fourierdlem87 42527 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → ∃𝑐 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
1029 iftrue 4473 . . . . . . . . . . . . . . . 16 (𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = 𝑐)
10301029negeqd 10880 . . . . . . . . . . . . . . 15 (𝑐 ≤ (π / 2) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = -𝑐)
10311030adantl 484 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = -𝑐)
103252a1i 11 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π ∈ ℝ*)
103353a1i 11 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ∈ ℝ*)
1034 rpre 12398 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+𝑐 ∈ ℝ)
10351034renegcld 11067 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → -𝑐 ∈ ℝ)
10361035adantr 483 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 ∈ ℝ)
10371034adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ∈ ℝ)
103810rehalfcli 11887 . . . . . . . . . . . . . . . . . 18 (π / 2) ∈ ℝ
10391038a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (π / 2) ∈ ℝ)
104010a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → π ∈ ℝ)
1041 simpr 487 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ≤ (π / 2))
1042 halfpos 11868 . . . . . . . . . . . . . . . . . . . 20 (π ∈ ℝ → (0 < π ↔ (π / 2) < π))
104310, 1042ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (0 < π ↔ (π / 2) < π)
104456, 1043mpbi 232 . . . . . . . . . . . . . . . . . 18 (π / 2) < π
10451044a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (π / 2) < π)
10461037, 1039, 1040, 1041, 1045lelttrd 10798 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 < π)
10471037, 1040ltnegd 11218 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (𝑐 < π ↔ -π < -𝑐))
10481046, 1047mpbid 234 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π < -𝑐)
1049 rpgt0 12402 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → 0 < 𝑐)
10501034lt0neg2d 11210 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (0 < 𝑐 ↔ -𝑐 < 0))
10511049, 1050mpbid 234 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → -𝑐 < 0)
10521051adantr 483 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 < 0)
10531032, 1033, 1036, 1048, 1052eliood 41822 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 ∈ (-π(,)0))
10541031, 1053eqeltrd 2913 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
1055 iffalse 4476 . . . . . . . . . . . . . . . 16 𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = (π / 2))
10561055negeqd 10880 . . . . . . . . . . . . . . 15 𝑐 ≤ (π / 2) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = -(π / 2))
10571038renegcli 10947 . . . . . . . . . . . . . . . . . . 19 -(π / 2) ∈ ℝ
10581057rexri 10699 . . . . . . . . . . . . . . . . . 18 -(π / 2) ∈ ℝ*
105952, 53, 10583pm3.2i 1335 . . . . . . . . . . . . . . . . 17 (-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -(π / 2) ∈ ℝ*)
10601038, 10ltnegi 11184 . . . . . . . . . . . . . . . . . . 19 ((π / 2) < π ↔ -π < -(π / 2))
10611044, 1060mpbi 232 . . . . . . . . . . . . . . . . . 18 -π < -(π / 2)
1062 2pos 11741 . . . . . . . . . . . . . . . . . . . 20 0 < 2
106310, 101, 56, 1062divgt0ii 11557 . . . . . . . . . . . . . . . . . . 19 0 < (π / 2)
1064 lt0neg2 11147 . . . . . . . . . . . . . . . . . . . 20 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
10651038, 1064ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (0 < (π / 2) ↔ -(π / 2) < 0)
10661063, 1065mpbi 232 . . . . . . . . . . . . . . . . . 18 -(π / 2) < 0
10671061, 1066pm3.2i 473 . . . . . . . . . . . . . . . . 17 (-π < -(π / 2) ∧ -(π / 2) < 0)
1068 elioo3g 12768 . . . . . . . . . . . . . . . . 17 (-(π / 2) ∈ (-π(,)0) ↔ ((-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -(π / 2) ∈ ℝ*) ∧ (-π < -(π / 2) ∧ -(π / 2) < 0)))
10691059, 1067, 1068mpbir2an 709 . . . . . . . . . . . . . . . 16 -(π / 2) ∈ (-π(,)0)
10701069a1i 11 . . . . . . . . . . . . . . 15 𝑐 ≤ (π / 2) → -(π / 2) ∈ (-π(,)0))
10711056, 1070eqeltrd 2913 . . . . . . . . . . . . . 14 𝑐 ≤ (π / 2) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
10721071adantl 484 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
10731054, 1072pm2.61dan 811 . . . . . . . . . . . 12 (𝑐 ∈ ℝ+ → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
107410733ad2ant2 1130 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
1075 ioombl 24166 . . . . . . . . . . . . . . 15 (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol
10761075a1i 11 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol)
1077 simpr 487 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10781076, 1077jca 514 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
1079 ioossicc 12823 . . . . . . . . . . . . . . . . 17 (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0)
10801079a1i 11 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0))
108111a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → -π ∈ ℝ)
108210a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → π ∈ ℝ)
10831037, 1040, 1046ltled 10788 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ≤ π)
10841037, 1040lenegd 11219 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (𝑐 ≤ π ↔ -π ≤ -𝑐))
10851083, 1084mpbid 234 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π ≤ -𝑐)
10861030eqcomd 2827 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ≤ (π / 2) → -𝑐 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10871086adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10881085, 1087breqtrd 5092 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
108911, 1057, 1061ltleii 10763 . . . . . . . . . . . . . . . . . . . 20 -π ≤ -(π / 2)
10901089a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -π ≤ -(π / 2))
10911056eqcomd 2827 . . . . . . . . . . . . . . . . . . . 20 𝑐 ≤ (π / 2) → -(π / 2) = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10921091adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -(π / 2) = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10931090, 1092breqtrd 5092 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10941088, 1093pm2.61dan 811 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → -π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1095772a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → 0 ≤ π)
1096 iccss 12805 . . . . . . . . . . . . . . . . 17 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∧ 0 ≤ π)) → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0) ⊆ (-π[,]π))
10971081, 1082, 1094, 1095, 1096syl22anc 836 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0) ⊆ (-π[,]π))
10981080, 1097sstrd 3977 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℝ+ → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π))
1099796, 1073sseldi 3965 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ)
1100 0red 10644 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → 0 ∈ ℝ)
1101 rpge0 12403 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 ∈ ℝ+ → 0 ≤ 𝑐)
11021101adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ≤ 𝑐)
11031041iftrued 4475 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = 𝑐)
11041102, 1103breqtrrd 5094 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1105771, 1038, 1063ltleii 10763 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ (π / 2)
1106 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → ¬ 𝑐 ≤ (π / 2))
11071106iffalsed 4478 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = (π / 2))
11081105, 1107breqtrrid 5104 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
11091104, 1108pm2.61dan 811 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
11101038a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ ℝ+ → (π / 2) ∈ ℝ)
11111034, 1110ifcld 4512 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ)
11121111le0neg2d 11212 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → (0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ↔ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 0))
11131109, 1112mpbid 234 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 0)
1114 volioo 24170 . . . . . . . . . . . . . . . . . 18 ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ ∧ 0 ∈ ℝ ∧ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 0) → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) = (0 − -if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
11151099, 1100, 1113, 1114syl3anc 1367 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) = (0 − -if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
1116 0cn 10633 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℂ
11171116a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → 0 ∈ ℂ)
11181111recnd 10669 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℂ)
11191117, 1118subnegd 11004 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (0 − -if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) = (0 + if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
11201118addid2d 10841 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (0 + if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
11211115, 1119, 11203eqtrd 2860 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1122 min1 12583 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ ∧ (π / 2) ∈ ℝ) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 𝑐)
11231034, 1038, 1122sylancl 588 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 𝑐)
11241121, 1123eqbrtrd 5088 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℝ+ → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐)
11251098, 1124jca 514 . . . . . . . . . . . . . 14 (𝑐 ∈ ℝ+ → ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐))
11261125adantr 483 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐))
1127 sseq1 3992 . . . . . . . . . . . . . . . 16 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (𝑢 ⊆ (-π[,]π) ↔ (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π)))
1128 fveq2 6670 . . . . . . . . . . . . . . . . 17 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (vol‘𝑢) = (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)))
11291128breq1d 5076 . . . . . . . . . . . . . . . 16 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ((vol‘𝑢) ≤ 𝑐 ↔ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐))
11301127, 1129anbi12d 632 . . . . . . . . . . . . . . 15 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) ↔ ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐)))
1131 itgeq1 24373 . . . . . . . . . . . . . . . . . 18 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = ∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11321131fveq2d 6674 . . . . . . . . . . . . . . . . 17 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
11331132breq1d 5076 . . . . . . . . . . . . . . . 16 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ((abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11341133ralbidv 3197 . . . . . . . . . . . . . . 15 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11351130, 1134imbi12d 347 . . . . . . . . . . . . . 14 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ↔ (((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
11361135rspcva 3621 . . . . . . . . . . . . 13 (((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → (((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11371078, 1126, 1136sylc 65 . . . . . . . . . . . 12 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
113811373adant1 1126 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
1139 oveq1 7163 . . . . . . . . . . . . . . . 16 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (𝑑(,)0) = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0))
11401139itgeq1d 42291 . . . . . . . . . . . . . . 15 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = ∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11411140fveq2d 6674 . . . . . . . . . . . . . 14 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
11421141breq1d 5076 . . . . . . . . . . . . 13 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11431142ralbidv 3197 . . . . . . . . . . . 12 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11441143rspcev 3623 . . . . . . . . . . 11 ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0) ∧ ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
11451074, 1138, 1144syl2anc 586 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
11461145rexlimdv3a 3286 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11471028, 1146mpd 15 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
1148900, 1147r19.29a 3289 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
11491148ralrimiva 3182 . . . . . 6 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
1150 nnex 11644 . . . . . . . . 9 ℕ ∈ V
11511150mptex 6986 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ∈ V
11521151a1i 11 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ∈ V)
1153 eqidd 2822 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠))
1154777adantl 484 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
1155779ad4ant14 750 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
1156777adantl 484 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
1157 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
1158 simpl 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑘 ∈ ℕ)
11591157, 1158eqeltrd 2913 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℕ)
11601159nnred 11653 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℝ)
1161729a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / 2) ∈ ℝ)
11621160, 1161readdcld 10670 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (𝑛 + (1 / 2)) ∈ ℝ)
11631162adantr 483 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑛 + (1 / 2)) ∈ ℝ)
1164214, 1156sseldi 3965 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
11651163, 1164remulcld 10671 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
11661165resincld 15496 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11671156, 1166, 832syl2anc 586 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
11681167adantlll 716 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
11691160adantll 712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℝ)
11701169adantr 483 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑛 ∈ ℝ)
1171 1red 10642 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 1 ∈ ℝ)
11721171rehalfcld 11885 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (1 / 2) ∈ ℝ)
11731170, 1172readdcld 10670 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑛 + (1 / 2)) ∈ ℝ)
1174214, 1154sseldi 3965 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
11751173, 1174remulcld 10671 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
11761175resincld 15496 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11771168, 1176eqeltrd 2913 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) ∈ ℝ)
11781155, 1177remulcld 10671 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
1179829fvmpt2 6779 . . . . . . . . . . 11 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
11801154, 1178, 1179syl2anc 586 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
1181 oveq1 7163 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
11821181oveq1d 7171 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
11831182fveq2d 6674 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11841183ad2antlr 725 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11851168, 1184eqtrd 2856 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11861185oveq2d 7172 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
11871180, 1186eqtrd 2856 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
11881187itgeq2dv 24382 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → ∫(-π(,)0)(𝐺𝑠) d𝑠 = ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
1189 simpr 487 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
1190810itgeq2dv 24382 . . . . . . . . . . 11 (𝑛 = 𝑘 → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 = ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11911190eleq1d 2897 . . . . . . . . . 10 (𝑛 = 𝑘 → (∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ ↔ ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ))
1192805, 1191imbi12d 347 . . . . . . . . 9 (𝑛 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ) ↔ ((𝜑𝑘 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)))
1193779adantlr 713 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
1194 simpr 487 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
11951194, 777, 826syl2an 597 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11961193, 1195remulcld 10671 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
11971196, 858itgcl 24384 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
11981192, 1197chvarvv 2005 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
11991153, 1188, 1189, 1198fvmptd 6775 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑘) = ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
12009, 2, 1152, 1199, 1198clim0c 14864 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ⇝ 0 ↔ ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
12011149, 1200mpbird 259 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ⇝ 0)
12021150mptex 6986 . . . . . . 7 (𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π)) ∈ V
12036, 1202eqeltri 2909 . . . . . 6 𝐸 ∈ V
12041203a1i 11 . . . . 5 (𝜑𝐸 ∈ V)
12051150mptex 6986 . . . . . . 7 (𝑛 ∈ ℕ ↦ π) ∈ V
12061205a1i 11 . . . . . 6 (𝜑 → (𝑛 ∈ ℕ ↦ π) ∈ V)
1207 picn 25045 . . . . . . 7 π ∈ ℂ
12081207a1i 11 . . . . . 6 (𝜑 → π ∈ ℂ)
1209 eqidd 2822 . . . . . . . 8 (𝑚 ∈ ℕ → (𝑛 ∈ ℕ ↦ π) = (𝑛 ∈ ℕ ↦ π))
1210 eqidd 2822 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑛 = 𝑚) → π = π)
1211 id 22 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ)
121210a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ → π ∈ ℝ)
12131209, 1210, 1211, 1212fvmptd 6775 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑚) = π)
12141213adantl 484 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ π)‘𝑚) = π)
12159, 2, 1206, 1208, 1214climconst 14900 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ π) ⇝ π)
1216771, 56gtneii 10752 . . . . . 6 π ≠ 0
12171216a1i 11 . . . . 5 (𝜑 → π ≠ 0)
121816adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
121928adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
122039adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
1221838, 1218, 1219, 1220, 40, 41, 42, 843, 831, 829fourierdlem67 42507 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺:(-π[,]π)⟶ℝ)
12221221adantr 483 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → 𝐺:(-π[,]π)⟶ℝ)
1223814sselda 3967 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
12241222, 1223ffvelrnd 6852 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝐺𝑠) ∈ ℝ)
12251221ffvelrnda 6851 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
12261221feqmptd 6733 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
12271226, 856eqeltrrd 2914 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
1228814, 816, 1225, 1227iblss 24405 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ (𝐺𝑠)) ∈ 𝐿1)
12291224, 1228itgcl 24384 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)(𝐺𝑠) d𝑠 ∈ ℂ)
1230 eqid 2821 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)
12311230fvmpt2 6779 . . . . . . 7 ((𝑛 ∈ ℕ ∧ ∫(-π(,)0)(𝐺𝑠) d𝑠 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) = ∫(-π(,)0)(𝐺𝑠) d𝑠)
12321194, 1229, 1231syl2anc 586 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) = ∫(-π(,)0)(𝐺𝑠) d𝑠)
12331232, 1229eqeltrd 2913 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) ∈ ℂ)
1234 id 22 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
1235 eqid 2821 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ π) = (𝑛 ∈ ℕ ↦ π)
12361235fvmpt2 6779 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ π ∈ ℝ) → ((𝑛 ∈ ℕ ↦ π)‘𝑛) = π)
12371234, 10, 1236sylancl 588 . . . . . . 7 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑛) = π)
12381207a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → π ∈ ℂ)
12391216a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → π ≠ 0)
12401238, 1239jca 514 . . . . . . . 8 (𝑛 ∈ ℕ → (π ∈ ℂ ∧ π ≠ 0))
1241 eldifsn 4719 . . . . . . . 8 (π ∈ (ℂ ∖ {0}) ↔ (π ∈ ℂ ∧ π ≠ 0))
12421240, 1241sylibr 236 . . . . . . 7 (𝑛 ∈ ℕ → π ∈ (ℂ ∖ {0}))
12431237, 1242eqeltrd 2913 . . . . . 6 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑛) ∈ (ℂ ∖ {0}))
12441243adantl 484 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ π)‘𝑛) ∈ (ℂ ∖ {0}))
12451207a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ∈ ℂ)
12461216a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
12471229, 1245, 1246divcld 11416 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (∫(-π(,)0)(𝐺𝑠) d𝑠 / π) ∈ ℂ)
12486fvmpt2 6779 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π) ∈ ℂ) → (𝐸𝑛) = (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
12491194, 1247, 1248syl2anc 586 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
12501232eqcomd 2827 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)(𝐺𝑠) d𝑠 = ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛))
12511237eqcomd 2827 . . . . . . . 8 (𝑛 ∈ ℕ → π = ((𝑛 ∈ ℕ ↦ π)‘𝑛))
12521251adantl 484 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → π = ((𝑛 ∈ ℕ ↦ π)‘𝑛))
12531250, 1252oveq12d 7174 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (∫(-π(,)0)(𝐺𝑠) d𝑠 / π) = (((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) / ((𝑛 ∈ ℕ ↦ π)‘𝑛)))
12541249, 1253eqtrd 2856 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) / ((𝑛 ∈ ℕ ↦ π)‘𝑛)))
12553, 4, 5, 8, 9, 2, 1201, 1204, 1215, 1217, 1233, 1244, 1254climdivf 41942 . . . 4 (𝜑𝐸 ⇝ (0 / π))
12561207, 1216div0i 11374 . . . . 5 (0 / π) = 0
12571256a1i 11 . . . 4 (𝜑 → (0 / π) = 0)
12581255, 1257breqtrd 5092 . . 3 (𝜑𝐸 ⇝ 0)
1259 fourierdlem103.z . . . . 5 𝑍 = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
12601150mptex 6986 . . . . 5 (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ∈ V
12611259, 1260eqeltri 2909 . . . 4 𝑍 ∈ V
12621261a1i 11 . . 3 (𝜑𝑍 ∈ V)
12631150mptex 6986 . . . . 5 (𝑚 ∈ ℕ ↦ (𝑊 / 2)) ∈ V
12641263a1i 11 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ (𝑊 / 2)) ∈ V)
1265 limccl 24473 . . . . . 6 ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ⊆ ℂ
12661265, 38sseldi 3965 . . . . 5 (𝜑𝑊 ∈ ℂ)
12671266halfcld 11883 . . . 4 (𝜑 → (𝑊 / 2) ∈ ℂ)
1268 eqidd 2822 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑚 ∈ ℕ ↦ (𝑊 / 2)) = (𝑚 ∈ ℕ ↦ (𝑊 / 2)))
1269 eqidd 2822 . . . . 5 (((𝜑𝑛 ∈ (ℤ‘1)) ∧ 𝑚 = 𝑛) → (𝑊 / 2) = (𝑊 / 2))
12709eqcomi 2830 . . . . . . . 8 (ℤ‘1) = ℕ
12711270eleq2i 2904 . . . . . . 7 (𝑛 ∈ (ℤ‘1) ↔ 𝑛 ∈ ℕ)
12721271biimpi 218 . . . . . 6 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
12731272adantl 484 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
12741267adantr 483 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑊 / 2) ∈ ℂ)
12751268, 1269, 1273, 1274fvmptd 6775 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛) = (𝑊 / 2))
12761, 2, 1264, 1267, 1275climconst 14900 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ (𝑊 / 2)) ⇝ (𝑊 / 2))
12771247, 6fmptd 6878 . . . . 5 (𝜑𝐸:ℕ⟶ℂ)
12781277adantr 483 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → 𝐸:ℕ⟶ℂ)
12791278, 1273ffvelrnd 6852 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝐸𝑛) ∈ ℂ)
12801275, 1274eqeltrd 2913 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛) ∈ ℂ)
12811275oveq2d 7172 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝐸𝑛) + ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛)) = ((𝐸𝑛) + (𝑊 / 2)))
1282815a1i 11 . . . . . 6 (𝜑 → (-π(,)0) ∈ dom vol)
128352a1i 11 . . . . . . . . . . . . 13 (𝑠 ∈ (-π(,)0) → -π ∈ ℝ*)
1284 0red 10644 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π(,)0) → 0 ∈ ℝ)
12851284rexrd 10691 . . . . . . . . . . . . 13 (𝑠 ∈ (-π(,)0) → 0 ∈ ℝ*)
1286 id 22 . . . . . . . . . . . . 13 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ (-π(,)0))
1287 iooltub 41835 . . . . . . . . . . . . 13 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑠 ∈ (-π(,)0)) → 𝑠 < 0)
12881283, 1285, 1286, 1287syl3anc 1367 . . . . . . . . . . . 12 (𝑠 ∈ (-π(,)0) → 𝑠 < 0)
1289787, 1288ltned 10776 . . . . . . . . . . 11 (𝑠 ∈ (-π(,)0) → 𝑠 ≠ 0)
12901289neneqd 3021 . . . . . . . . . 10 (𝑠 ∈ (-π(,)0) → ¬ 𝑠 = 0)
1291 velsn 4583 . . . . . . . . . 10 (𝑠 ∈ {0} ↔ 𝑠 = 0)
12921290, 1291sylnibr 331 . . . . . . . . 9 (𝑠 ∈ (-π(,)0) → ¬ 𝑠 ∈ {0})
1293777, 1292eldifd 3947 . . . . . . . 8 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
12941293ssriv 3971 . . . . . . 7 (-π(,)0) ⊆ ((-π[,]π) ∖ {0})
12951294a1i 11 . . . . . 6 (𝜑 → (-π(,)0) ⊆ ((-π[,]π) ∖ {0}))
1296 fourierdlem103.d . . . . . 6 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
1297787adantl 484 . . . . . . . 8 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
1298 0red 10644 . . . . . . . 8 ((𝜑𝑠 ∈ (-π(,)0)) → 0 ∈ ℝ)
1299787, 1284, 1288ltled 10788 . . . . . . . . 9 (𝑠 ∈ (-π(,)0) → 𝑠 ≤ 0)
13001299adantl 484 . . . . . . . 8 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑠 ≤ 0)
13011297, 1298, 1300lensymd 10791 . . . . . . 7 ((𝜑𝑠 ∈ (-π(,)0)) → ¬ 0 < 𝑠)
13021301iffalsed 4478 . . . . . 6 ((𝜑𝑠 ∈ (-π(,)0)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
1303 eqid 2821 . . . . . . . 8 (𝐷𝑛) = (𝐷𝑛)
130411a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -π ∈ ℝ)
1305 0red 10644 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ)
130611, 771, 901ltleii 10763 . . . . . . . . 9 -π ≤ 0
13071306a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -π ≤ 0)
1308 eqid 2821 . . . . . . . 8 (𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) = (𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
13091296, 1194, 1303, 1304, 1305, 1307, 1308dirkeritg 42436 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐷𝑛)‘𝑠) d𝑠 = (((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) − ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π)))
1310 ubicc2 12854 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -π ≤ 0) → 0 ∈ (-π[,]0))
131152, 53, 1306, 1310mp3an 1457 . . . . . . . . . 10 0 ∈ (-π[,]0)
1312 oveq1 7163 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → (𝑠 / 2) = (0 / 2))
1313239, 244div0i 11374 . . . . . . . . . . . . . . . . 17 (0 / 2) = 0
13141313a1i 11 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → (0 / 2) = 0)
13151312, 1314eqtrd 2856 . . . . . . . . . . . . . . 15 (𝑠 = 0 → (𝑠 / 2) = 0)
1316 oveq2 7164 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 0 → (𝑘 · 𝑠) = (𝑘 · 0))
1317 elfzelz 12909 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℤ)
13181317zcnd 12089 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℂ)
13191318mul01d 10839 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → (𝑘 · 0) = 0)
13201316, 1319sylan9eq 2876 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 · 𝑠) = 0)
13211320fveq2d 6674 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘(𝑘 · 𝑠)) = (sin‘0))
1322 sin0 15502 . . . . . . . . . . . . . . . . . . . . 21 (sin‘0) = 0
13231322a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘0) = 0)
13241321, 1323eqtrd 2856 . . . . . . . . . . . . . . . . . . 19 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘(𝑘 · 𝑠)) = 0)
13251324oveq1d 7171 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = (0 / 𝑘))
1326 0red 10644 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 0 ∈ ℝ)
1327 1red 10642 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 1 ∈ ℝ)
13281317zred 12088 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℝ)
132999a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 0 < 1)
1330 elfzle1 12911 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 1 ≤ 𝑘)
13311326, 1327, 1328, 1329, 1330ltletrd 10800 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → 0 < 𝑘)
13321331gt0ne0d 11204 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 𝑘 ≠ 0)
13331318, 1332div0d 11415 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → (0 / 𝑘) = 0)
13341333adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (0 / 𝑘) = 0)
13351325, 1334eqtrd 2856 . . . . . . . . . . . . . . . . 17 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
13361335sumeq2dv 15060 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)0)
1337 fzfi 13341 . . . . . . . . . . . . . . . . . . 19 (1...𝑛) ∈ Fin
13381337olci 862 . . . . . . . . . . . . . . . . . 18 ((1...𝑛) ⊆ (ℤ ) ∨ (1...𝑛) ∈ Fin)
1339 sumz 15079 . . . . . . . . . . . . . . . . . 18 (((1...𝑛) ⊆ (ℤ ) ∨ (1...𝑛) ∈ Fin) → Σ𝑘 ∈ (1...𝑛)0 = 0)
13401338, 1339ax-mp 5 . . . . . . . . . . . . . . . . 17 Σ𝑘 ∈ (1...𝑛)0 = 0
13411340a1i 11 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)0 = 0)
13421336, 1341eqtrd 2856 . . . . . . . . . . . . . . 15 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
13431315, 1342oveq12d 7174 . . . . . . . . . . . . . 14 (𝑠 = 0 → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = (0 + 0))
1344 00id 10815 . . . . . . . . . . . . . . 15 (0 + 0) = 0
13451344a1i 11 . . . . . . . . . . . . . 14 (𝑠 = 0 → (0 + 0) = 0)
13461343, 1345eqtrd 2856 . . . . . . . . . . . . 13 (𝑠 = 0 → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = 0)
13471346oveq1d 7171 . . . . . . . . . . . 12 (𝑠 = 0 → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = (0 / π))
13481256a1i 11 . . . . . . . . . . . 12 (𝑠 = 0 → (0 / π) = 0)
13491347, 1348eqtrd 2856 . . . . . . . . . . 11 (𝑠 = 0 → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = 0)
1350771elexi 3513 . . . . . . . . . . 11 0 ∈ V
13511349, 1308, 1350fvmpt 6768 . . . . . . . . . 10 (0 ∈ (-π[,]0) → ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) = 0)
13521311, 1351ax-mp 5 . . . . . . . . 9 ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) = 0
1353 lbicc2 12853 . . . . . . . . . . . 12 ((-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -π ≤ 0) → -π ∈ (-π[,]0))
135452, 53, 1306, 1353mp3an 1457 . . . . . . . . . . 11 -π ∈ (-π[,]0)
1355 oveq1 7163 . . . . . . . . . . . . . 14 (𝑠 = -π → (𝑠 / 2) = (-π / 2))
1356 oveq2 7164 . . . . . . . . . . . . . . . . 17 (𝑠 = -π → (𝑘 · 𝑠) = (𝑘 · -π))
13571356fveq2d 6674 . . . . . . . . . . . . . . . 16 (𝑠 = -π → (sin‘(𝑘 · 𝑠)) = (sin‘(𝑘 · -π)))
13581357oveq1d 7171 . . . . . . . . . . . . . . 15 (𝑠 = -π → ((sin‘(𝑘 · 𝑠)) / 𝑘) = ((sin‘(𝑘 · -π)) / 𝑘))
13591358sumeq2sdv 15061 . . . . . . . . . . . . . 14 (𝑠 = -π → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘))
13601355, 1359oveq12d 7174 . . . . . . . . . . . . 13 (𝑠 = -π → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = ((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)))
13611360oveq1d 7171 . . . . . . . . . . . 12 (𝑠 = -π → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π))
1362 ovex 7189 . . . . . . . . . . . 12 (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π) ∈ V
13631361, 1308, 1362fvmpt 6768 . . . . . . . . . . 11 (-π ∈ (-π[,]0) → ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π) = (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π))
13641354, 1363ax-mp 5 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π) = (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π)
1365 mulneg12 11078 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℂ ∧ π ∈ ℂ) → (-𝑘 · π) = (𝑘 · -π))
13661318, 1207, 1365sylancl 588 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → (-𝑘 · π) = (𝑘 · -π))
13671366eqcomd 2827 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → (𝑘 · -π) = (-𝑘 · π))
13681367oveq1d 7171 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → ((𝑘 · -π) / π) = ((-𝑘 · π) / π))
13691318negcld 10984 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → -𝑘 ∈ ℂ)
13701207a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → π ∈ ℂ)
13711216a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → π ≠ 0)
13721369, 1370, 1371divcan4d 11422 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → ((-𝑘 · π) / π) = -𝑘)
13731368, 1372eqtrd 2856 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → ((𝑘 · -π) / π) = -𝑘)
13741317znegcld 12090 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → -𝑘 ∈ ℤ)
13751373, 1374eqeltrd 2913 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑛) → ((𝑘 · -π) / π) ∈ ℤ)
1376 negpicn 25048 . . . . . . . . . . . . . . . . . . . 20 -π ∈ ℂ
13771376a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → -π ∈ ℂ)
13781318, 1377mulcld 10661 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → (𝑘 · -π) ∈ ℂ)
1379 sineq0 25109 . . . . . . . . . . . . . . . . . 18 ((𝑘 · -π) ∈ ℂ → ((sin‘(𝑘 · -π)) = 0 ↔ ((𝑘 · -π) / π) ∈ ℤ))
13801378, 1379syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · -π)) = 0 ↔ ((𝑘 · -π) / π) ∈ ℤ))
13811375, 1380mpbird 259 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑛) → (sin‘(𝑘 · -π)) = 0)
13821381oveq1d 7171 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · -π)) / 𝑘) = (0 / 𝑘))
13831382, 1333eqtrd 2856 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · -π)) / 𝑘) = 0)
13841383sumeq2i 15056 . . . . . . . . . . . . 13 Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)0
13851384, 1340eqtri 2844 . . . . . . . . . . . 12 Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘) = 0
13861385oveq2i 7167 . . . . . . . . . . 11 ((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) = ((-π / 2) + 0)
13871386oveq1i 7166 . . . . . . . . . 10 (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π) = (((-π / 2) + 0) / π)
13881376, 239, 244divcli 11382 . . . . . . . . . . . . . 14 (-π / 2) ∈ ℂ
13891388addid1i 10827 . . . . . . . . . . . . 13 ((-π / 2) + 0) = (-π / 2)
1390 divneg 11332 . . . . . . . . . . . . . 14 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
13911207, 239, 244, 1390mp3an 1457 . . . . . . . . . . . . 13 -(π / 2) = (-π / 2)
13921389, 1391eqtr4i 2847 . . . . . . . . . . . 12 ((-π / 2) + 0) = -(π / 2)
13931392oveq1i 7166 . . . . . . . . . . 11 (((-π / 2) + 0) / π) = (-(π / 2) / π)
13941038recni 10655 . . . . . . . . . . . . 13 (π / 2) ∈ ℂ
1395 divneg 11332 . . . . . . . . . . . . 13 (((π / 2) ∈ ℂ ∧ π ∈ ℂ ∧ π ≠ 0) → -((π / 2) / π) = (-(π / 2) / π))
13961394, 1207, 1216, 1395mp3an 1457 . . . . . . . . . . . 12 -((π / 2) / π) = (-(π / 2) / π)
13971396eqcomi 2830 . . . . . . . . . . 11 (-(π / 2) / π) = -((π / 2) / π)
13981207, 239, 1207, 244, 1216divdiv32i 11395 . . . . . . . . . . . . 13 ((π / 2) / π) = ((π / π) / 2)
13991207, 1216dividi 11373 . . . . . . . . . . . . . 14 (π / π) = 1
14001399oveq1i 7166 . . . . . . . . . . . . 13 ((π / π) / 2) = (1 / 2)
14011398, 1400eqtri 2844 . . . . . . . . . . . 12 ((π / 2) / π) = (1 / 2)
14021401negeqi 10879 . . . . . . . . . . 11 -((π / 2) / π) = -(1 / 2)
14031393, 1397, 14023eqtri 2848 . . . . . . . . . 10 (((-π / 2) + 0) / π) = -(1 / 2)
14041364, 1387, 14033eqtri 2848 . . . . . . . . 9 ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π) = -(1 / 2)
14051352, 1404oveq12i 7168 . . . . . . . 8 (((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) − ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π)) = (0 − -(1 / 2))
14061405a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) − ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π)) = (0 − -(1 / 2)))
1407 halfcn 11853 . . . . . . . . . 10 (1 / 2) ∈ ℂ
14081116, 1407subnegi 10965 . . . . . . . . 9 (0 − -(1 / 2)) = (0 + (1 / 2))
14091407addid2i 10828 . . . . . . . . 9 (0 + (1 / 2)) = (1 / 2)
14101408, 1409eqtri 2844 . . . . . . . 8 (0 − -(1 / 2)) = (1 / 2)
14111410a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (0 − -(1 / 2)) = (1 / 2))
14121309, 1406, 14113eqtrd 2860 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
141315, 16, 264, 265, 267, 839, 269, 271, 273, 40, 41, 42, 831, 829, 850, 599, 852, 854, 27, 38, 1282, 1295, 6, 1296, 39, 1302, 1412fourierdlem95 42535 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑊 / 2)) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14141273, 1413syldan 593 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝐸𝑛) + (𝑊 / 2)) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14151259a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑍 = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
1416 fveq2 6670 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝐷𝑚) = (𝐷𝑛))
14171416fveq1d 6672 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝐷𝑚)‘𝑠) = ((𝐷𝑛)‘𝑠))
14181417oveq2d 7172 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
14191418adantr 483 . . . . . . . . 9 ((𝑚 = 𝑛𝑠 ∈ (-π(,)0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
14201419itgeq2dv 24382 . . . . . . . 8 (𝑚 = 𝑛 → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14211420adantl 484 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = 𝑛) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
142215adantr 483 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π(,)0)) → 𝐹:ℝ⟶ℝ)
142316adantr 483 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑋 ∈ ℝ)
14241423, 1297readdcld 10670 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π(,)0)) → (𝑋 + 𝑠) ∈ ℝ)
14251422, 1424ffvelrnd 6852 . . . . . . . . . 10 ((𝜑𝑠 ∈ (-π(,)0)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14261425adantlr 713 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14271296dirkerf 42431 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛):ℝ⟶ℝ)
14281427ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝐷𝑛):ℝ⟶ℝ)
1429787adantl 484 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
14301428, 1429ffvelrnd 6852 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
14311426, 1430remulcld 10671 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
143215adantr 483 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ)
143316adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
1434214sseli 3963 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
14351434adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
14361433, 1435readdcld 10670 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑋 + 𝑠) ∈ ℝ)
14371432, 1436ffvelrnd 6852 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14381437adantlr 713 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14391427ad2antlr 725 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐷𝑛):ℝ⟶ℝ)
14401434adantl 484 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
14411439, 1440ffvelrnd 6852 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
14421438, 1441remulcld 10671 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
144310a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
14441296dirkercncf 42441 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
14451444adantl 484 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
1446 eqid 2821 . . . . . . . . . 10 (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
14471304, 1443, 838, 1218, 264, 844, 845, 846, 847, 848, 80, 849, 1445, 1446fourierdlem84 42524 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
1448814, 816, 1442, 1447iblss 24405 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
14491431, 1448itgrecl 24398 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℝ)
14501415, 1421, 1194, 1449fvmptd 6775 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14511450eqcomd 2827 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 = (𝑍𝑛))
14521273, 1451syldan 593 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 = (𝑍𝑛))
14531281, 1414, 14523eqtrrd 2861 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑍𝑛) = ((𝐸𝑛) + ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛)))
14541, 2, 1258, 1262, 1276, 1279, 1280, 1453climadd 14988 . 2 (𝜑𝑍 ⇝ (0 + (𝑊 / 2)))
14551267addid2d 10841 . 2 (𝜑 → (0 + (𝑊 / 2)) = (𝑊 / 2))
14561454, 1455breqtrd 5092 1 (𝜑𝑍 ⇝ (𝑊 / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wtru 1538  wcel 2114  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  csb 3883  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  ifcif 4467  {csn 4567  {cpr 4569   class class class wbr 5066  cmpt 5146  dom cdm 5555  ran crn 5556  cres 5557  cio 6312   Fn wfn 6350  wf 6351  cfv 6355   Isom wiso 6356  crio 7113  (class class class)co 7156  m cmap 8406  Fincfn 8509  supcsup 8904  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674   < clt 10675  cle 10676  cmin 10870  -cneg 10871   / cdiv 11297  cn 11638  2c2 11693  3c3 11694  0cn0 11898  cz 11982  cuz 12244  +crp 12390  (,)cioo 12739  [,]cicc 12742  ...cfz 12893  ..^cfzo 13034   mod cmo 13238  chash 13691  abscabs 14593  cli 14841  Σcsu 15042  sincsin 15417  πcpi 15420  TopOpenctopn 16695  topGenctg 16711  fldccnfld 20545  intcnt 21625  cnccncf 23484  volcvol 24064  𝐿1cibl 24218  citg 24219   lim climc 24460   D cdv 24461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-symdif 4219  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-acn 9371  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-t1 21922  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-ovol 24065  df-vol 24066  df-mbf 24220  df-itg1 24221  df-itg2 24222  df-ibl 24223  df-itg 24224  df-0p 24271  df-limc 24464  df-dv 24465
This theorem is referenced by:  fourierdlem112  42552
  Copyright terms: Public domain W3C validator