HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsl1i Structured version   Visualization version   GIF version

Theorem mdsl1i 29308
Description: If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsl.1 𝐴C
mdsl.2 𝐵C
Assertion
Ref Expression
mdsl1i (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) ↔ 𝐴 𝑀 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mdsl1i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3660 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → ((𝐴𝐵) ⊆ 𝑥 ↔ (𝐴𝐵) ⊆ (𝑦 (𝐴𝐵))))
2 sseq1 3659 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥 ⊆ (𝐴 𝐵) ↔ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)))
31, 2anbi12d 747 . . . . . . 7 (𝑥 = (𝑦 (𝐴𝐵)) → (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) ↔ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))))
4 sseq1 3659 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥𝐵 ↔ (𝑦 (𝐴𝐵)) ⊆ 𝐵))
5 oveq1 6697 . . . . . . . . . 10 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥 𝐴) = ((𝑦 (𝐴𝐵)) ∨ 𝐴))
65ineq1d 3846 . . . . . . . . 9 (𝑥 = (𝑦 (𝐴𝐵)) → ((𝑥 𝐴) ∩ 𝐵) = (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵))
7 oveq1 6697 . . . . . . . . 9 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥 (𝐴𝐵)) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))
86, 7eqeq12d 2666 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → (((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)) ↔ (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))
94, 8imbi12d 333 . . . . . . 7 (𝑥 = (𝑦 (𝐴𝐵)) → ((𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) ↔ ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))))
103, 9imbi12d 333 . . . . . 6 (𝑥 = (𝑦 (𝐴𝐵)) → ((((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) ↔ (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))))
1110rspccv 3337 . . . . 5 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → ((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))))
12 impexp 461 . . . . . . 7 (((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵) → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))) ↔ (((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))))
13 impexp 461 . . . . . . 7 ((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))) ↔ ((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))))
1412, 13bitr2i 265 . . . . . 6 (((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))) ↔ ((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵) → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))
15 inss2 3867 . . . . . . . . . . . 12 (𝐴𝐵) ⊆ 𝐵
16 mdsl.1 . . . . . . . . . . . . . . 15 𝐴C
17 mdsl.2 . . . . . . . . . . . . . . 15 𝐵C
1816, 17chincli 28447 . . . . . . . . . . . . . 14 (𝐴𝐵) ∈ C
19 chlub 28496 . . . . . . . . . . . . . 14 ((𝑦C ∧ (𝐴𝐵) ∈ C𝐵C ) → ((𝑦𝐵 ∧ (𝐴𝐵) ⊆ 𝐵) ↔ (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2018, 17, 19mp3an23 1456 . . . . . . . . . . . . 13 (𝑦C → ((𝑦𝐵 ∧ (𝐴𝐵) ⊆ 𝐵) ↔ (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2120biimpd 219 . . . . . . . . . . . 12 (𝑦C → ((𝑦𝐵 ∧ (𝐴𝐵) ⊆ 𝐵) → (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2215, 21mpan2i 713 . . . . . . . . . . 11 (𝑦C → (𝑦𝐵 → (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2317, 16chub2i 28457 . . . . . . . . . . . 12 𝐵 ⊆ (𝐴 𝐵)
24 sstr 3644 . . . . . . . . . . . 12 (((𝑦 (𝐴𝐵)) ⊆ 𝐵𝐵 ⊆ (𝐴 𝐵)) → (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))
2523, 24mpan2 707 . . . . . . . . . . 11 ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))
2622, 25syl6 35 . . . . . . . . . 10 (𝑦C → (𝑦𝐵 → (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)))
27 chub2 28495 . . . . . . . . . . 11 (((𝐴𝐵) ∈ C𝑦C ) → (𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)))
2818, 27mpan 706 . . . . . . . . . 10 (𝑦C → (𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)))
2926, 28jctild 565 . . . . . . . . 9 (𝑦C → (𝑦𝐵 → ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))))
30 chjcl 28344 . . . . . . . . . 10 ((𝑦C ∧ (𝐴𝐵) ∈ C ) → (𝑦 (𝐴𝐵)) ∈ C )
3118, 30mpan2 707 . . . . . . . . 9 (𝑦C → (𝑦 (𝐴𝐵)) ∈ C )
3229, 31jctild 565 . . . . . . . 8 (𝑦C → (𝑦𝐵 → ((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)))))
3332, 22jcad 554 . . . . . . 7 (𝑦C → (𝑦𝐵 → (((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵)))
34 chjass 28520 . . . . . . . . . . . 12 ((𝑦C ∧ (𝐴𝐵) ∈ C𝐴C ) → ((𝑦 (𝐴𝐵)) ∨ 𝐴) = (𝑦 ((𝐴𝐵) ∨ 𝐴)))
3518, 16, 34mp3an23 1456 . . . . . . . . . . 11 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ 𝐴) = (𝑦 ((𝐴𝐵) ∨ 𝐴)))
3618, 16chjcomi 28455 . . . . . . . . . . . . 13 ((𝐴𝐵) ∨ 𝐴) = (𝐴 (𝐴𝐵))
3716, 17chabs1i 28505 . . . . . . . . . . . . 13 (𝐴 (𝐴𝐵)) = 𝐴
3836, 37eqtri 2673 . . . . . . . . . . . 12 ((𝐴𝐵) ∨ 𝐴) = 𝐴
3938oveq2i 6701 . . . . . . . . . . 11 (𝑦 ((𝐴𝐵) ∨ 𝐴)) = (𝑦 𝐴)
4035, 39syl6eq 2701 . . . . . . . . . 10 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ 𝐴) = (𝑦 𝐴))
4140ineq1d 3846 . . . . . . . . 9 (𝑦C → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 𝐴) ∩ 𝐵))
42 chjass 28520 . . . . . . . . . . 11 ((𝑦C ∧ (𝐴𝐵) ∈ C ∧ (𝐴𝐵) ∈ C ) → ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) = (𝑦 ((𝐴𝐵) ∨ (𝐴𝐵))))
4318, 18, 42mp3an23 1456 . . . . . . . . . 10 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) = (𝑦 ((𝐴𝐵) ∨ (𝐴𝐵))))
4418chjidmi 28508 . . . . . . . . . . 11 ((𝐴𝐵) ∨ (𝐴𝐵)) = (𝐴𝐵)
4544oveq2i 6701 . . . . . . . . . 10 (𝑦 ((𝐴𝐵) ∨ (𝐴𝐵))) = (𝑦 (𝐴𝐵))
4643, 45syl6eq 2701 . . . . . . . . 9 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) = (𝑦 (𝐴𝐵)))
4741, 46eqeq12d 2666 . . . . . . . 8 (𝑦C → ((((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) ↔ ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
4847biimpd 219 . . . . . . 7 (𝑦C → ((((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
4933, 48imim12d 81 . . . . . 6 (𝑦C → (((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵) → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))) → (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5014, 49syl5bi 232 . . . . 5 (𝑦C → (((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))) → (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5111, 50syl5com 31 . . . 4 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → (𝑦C → (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5251ralrimiv 2994 . . 3 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
53 mdbr 29281 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5416, 17, 53mp2an 708 . . 3 (𝐴 𝑀 𝐵 ↔ ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
5552, 54sylibr 224 . 2 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → 𝐴 𝑀 𝐵)
56 mdbr 29281 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
5716, 17, 56mp2an 708 . . 3 (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))))
58 ax-1 6 . . . 4 ((𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) → (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
5958ralimi 2981 . . 3 (∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) → ∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
6057, 59sylbi 207 . 2 (𝐴 𝑀 𝐵 → ∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
6155, 60impbii 199 1 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) ↔ 𝐴 𝑀 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  cin 3606  wss 3607   class class class wbr 4685  (class class class)co 6690   C cch 27914   chj 27918   𝑀 cmd 27951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvmulass 27992  ax-hvdistr1 27993  ax-hvdistr2 27994  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070  ax-hcompl 28187
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-cn 21079  df-cnp 21080  df-lm 21081  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cfil 23099  df-cau 23100  df-cmet 23101  df-grpo 27475  df-gid 27476  df-ginv 27477  df-gdiv 27478  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-vs 27582  df-nmcv 27583  df-ims 27584  df-dip 27684  df-ssp 27705  df-ph 27796  df-cbn 27847  df-hnorm 27953  df-hba 27954  df-hvsub 27956  df-hlim 27957  df-hcau 27958  df-sh 28192  df-ch 28206  df-oc 28237  df-ch0 28238  df-shs 28295  df-chj 28297  df-md 29267
This theorem is referenced by:  mdsl2i  29309  cvmdi  29311
  Copyright terms: Public domain W3C validator