MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicopnf Structured version   Visualization version   GIF version

Theorem ovolicopnf 24125
Description: The measure of a right-unbounded interval. (Contributed by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
ovolicopnf (𝐴 ∈ ℝ → (vol*‘(𝐴[,)+∞)) = +∞)

Proof of Theorem ovolicopnf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pnfxr 10695 . . . . . . . . 9 +∞ ∈ ℝ*
2 icossre 12818 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐴[,)+∞) ⊆ ℝ)
31, 2mpan2 689 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴[,)+∞) ⊆ ℝ)
43adantr 483 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝐴[,)+∞) ⊆ ℝ)
5 ovolge0 24082 . . . . . . 7 ((𝐴[,)+∞) ⊆ ℝ → 0 ≤ (vol*‘(𝐴[,)+∞)))
64, 5syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 0 ≤ (vol*‘(𝐴[,)+∞)))
7 mnflt0 12521 . . . . . . 7 -∞ < 0
8 mnfxr 10698 . . . . . . . 8 -∞ ∈ ℝ*
9 0xr 10688 . . . . . . . 8 0 ∈ ℝ*
10 ovolcl 24079 . . . . . . . . . 10 ((𝐴[,)+∞) ⊆ ℝ → (vol*‘(𝐴[,)+∞)) ∈ ℝ*)
113, 10syl 17 . . . . . . . . 9 (𝐴 ∈ ℝ → (vol*‘(𝐴[,)+∞)) ∈ ℝ*)
1211adantr 483 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) ∈ ℝ*)
13 xrltletr 12551 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (vol*‘(𝐴[,)+∞)) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐴[,)+∞))) → -∞ < (vol*‘(𝐴[,)+∞))))
148, 9, 12, 13mp3an12i 1461 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐴[,)+∞))) → -∞ < (vol*‘(𝐴[,)+∞))))
157, 14mpani 694 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (0 ≤ (vol*‘(𝐴[,)+∞)) → -∞ < (vol*‘(𝐴[,)+∞))))
166, 15mpd 15 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → -∞ < (vol*‘(𝐴[,)+∞)))
17 simpr 487 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) < +∞)
18 xrrebnd 12562 . . . . . 6 ((vol*‘(𝐴[,)+∞)) ∈ ℝ* → ((vol*‘(𝐴[,)+∞)) ∈ ℝ ↔ (-∞ < (vol*‘(𝐴[,)+∞)) ∧ (vol*‘(𝐴[,)+∞)) < +∞)))
1912, 18syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) ∈ ℝ ↔ (-∞ < (vol*‘(𝐴[,)+∞)) ∧ (vol*‘(𝐴[,)+∞)) < +∞)))
2016, 17, 19mpbir2and 711 . . . 4 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) ∈ ℝ)
2120ltp1d 11570 . . 3 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) < ((vol*‘(𝐴[,)+∞)) + 1))
22 peano2re 10813 . . . . 5 ((vol*‘(𝐴[,)+∞)) ∈ ℝ → ((vol*‘(𝐴[,)+∞)) + 1) ∈ ℝ)
2320, 22syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) + 1) ∈ ℝ)
24 simpl 485 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 𝐴 ∈ ℝ)
2523, 24readdcld 10670 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) ∈ ℝ)
26 0red 10644 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 0 ∈ ℝ)
2720lep1d 11571 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) ≤ ((vol*‘(𝐴[,)+∞)) + 1))
2826, 20, 23, 6, 27letrd 10797 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 0 ≤ ((vol*‘(𝐴[,)+∞)) + 1))
2924, 23addge02d 11229 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (0 ≤ ((vol*‘(𝐴[,)+∞)) + 1) ↔ 𝐴 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)))
3028, 29mpbid 234 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 𝐴 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))
31 ovolicc 24124 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) ∈ ℝ ∧ 𝐴 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) = ((((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) − 𝐴))
3224, 25, 30, 31syl3anc 1367 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) = ((((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) − 𝐴))
3323recnd 10669 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) + 1) ∈ ℂ)
3424recnd 10669 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 𝐴 ∈ ℂ)
3533, 34pncand 10998 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) − 𝐴) = ((vol*‘(𝐴[,)+∞)) + 1))
3632, 35eqtrd 2856 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) = ((vol*‘(𝐴[,)+∞)) + 1))
37 elicc2 12802 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) ∈ ℝ) → (𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))))
3824, 25, 37syl2anc 586 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))))
3938biimpa 479 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)))
4039simp1d 1138 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → 𝑥 ∈ ℝ)
4139simp2d 1139 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → 𝐴𝑥)
42 elicopnf 12834 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝑥 ∈ (𝐴[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥)))
4342ad2antrr 724 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → (𝑥 ∈ (𝐴[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥)))
4440, 41, 43mpbir2and 711 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → 𝑥 ∈ (𝐴[,)+∞))
4544ex 415 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) → 𝑥 ∈ (𝐴[,)+∞)))
4645ssrdv 3973 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ⊆ (𝐴[,)+∞))
47 ovolss 24086 . . . . . 6 (((𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ⊆ (𝐴[,)+∞) ∧ (𝐴[,)+∞) ⊆ ℝ) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) ≤ (vol*‘(𝐴[,)+∞)))
4846, 4, 47syl2anc 586 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) ≤ (vol*‘(𝐴[,)+∞)))
4936, 48eqbrtrrd 5090 . . . 4 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) + 1) ≤ (vol*‘(𝐴[,)+∞)))
5023, 20, 49lensymd 10791 . . 3 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ¬ (vol*‘(𝐴[,)+∞)) < ((vol*‘(𝐴[,)+∞)) + 1))
5121, 50pm2.65da 815 . 2 (𝐴 ∈ ℝ → ¬ (vol*‘(𝐴[,)+∞)) < +∞)
52 nltpnft 12558 . . 3 ((vol*‘(𝐴[,)+∞)) ∈ ℝ* → ((vol*‘(𝐴[,)+∞)) = +∞ ↔ ¬ (vol*‘(𝐴[,)+∞)) < +∞))
5311, 52syl 17 . 2 (𝐴 ∈ ℝ → ((vol*‘(𝐴[,)+∞)) = +∞ ↔ ¬ (vol*‘(𝐴[,)+∞)) < +∞))
5451, 53mpbird 259 1 (𝐴 ∈ ℝ → (vol*‘(𝐴[,)+∞)) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3936   class class class wbr 5066  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   + caddc 10540  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674   < clt 10675  cle 10676  cmin 10870  [,)cico 12741  [,]cicc 12742  vol*covol 24063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-rest 16696  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-bases 21554  df-cmp 21995  df-ovol 24065
This theorem is referenced by:  ovolre  24126
  Copyright terms: Public domain W3C validator