MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcopt Structured version   Visualization version   GIF version

Theorem pcopt 23626
Description: Concatenation with a point does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypothesis
Ref Expression
pcopt.1 𝑃 = ((0[,]1) × {𝑌})
Assertion
Ref Expression
pcopt ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝𝐽)𝐹)( ≃ph𝐽)𝐹)

Proof of Theorem pcopt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcopt.1 . . . . . . . . . 10 𝑃 = ((0[,]1) × {𝑌})
21fveq1i 6671 . . . . . . . . 9 (𝑃‘(2 · 𝑥)) = (((0[,]1) × {𝑌})‘(2 · 𝑥))
3 simpr 487 . . . . . . . . . . 11 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹‘0) = 𝑌)
4 iiuni 23489 . . . . . . . . . . . . . 14 (0[,]1) = II
5 eqid 2821 . . . . . . . . . . . . . 14 𝐽 = 𝐽
64, 5cnf 21854 . . . . . . . . . . . . 13 (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶ 𝐽)
76adantr 483 . . . . . . . . . . . 12 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐹:(0[,]1)⟶ 𝐽)
8 0elunit 12856 . . . . . . . . . . . 12 0 ∈ (0[,]1)
9 ffvelrn 6849 . . . . . . . . . . . 12 ((𝐹:(0[,]1)⟶ 𝐽 ∧ 0 ∈ (0[,]1)) → (𝐹‘0) ∈ 𝐽)
107, 8, 9sylancl 588 . . . . . . . . . . 11 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹‘0) ∈ 𝐽)
113, 10eqeltrrd 2914 . . . . . . . . . 10 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝑌 𝐽)
12 elii1 23539 . . . . . . . . . . 11 (𝑥 ∈ (0[,](1 / 2)) ↔ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)))
13 iihalf1 23535 . . . . . . . . . . 11 (𝑥 ∈ (0[,](1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
1412, 13sylbir 237 . . . . . . . . . 10 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
15 fvconst2g 6964 . . . . . . . . . 10 ((𝑌 𝐽 ∧ (2 · 𝑥) ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘(2 · 𝑥)) = 𝑌)
1611, 14, 15syl2an 597 . . . . . . . . 9 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (((0[,]1) × {𝑌})‘(2 · 𝑥)) = 𝑌)
172, 16syl5eq 2868 . . . . . . . 8 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (𝑃‘(2 · 𝑥)) = 𝑌)
18 simplr 767 . . . . . . . 8 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (𝐹‘0) = 𝑌)
1917, 18eqtr4d 2859 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (𝑃‘(2 · 𝑥)) = (𝐹‘0))
2019ifeq1d 4485 . . . . . 6 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))
2120expr 459 . . . . 5 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))))
22 iffalse 4476 . . . . . 6 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = (𝐹‘((2 · 𝑥) − 1)))
23 iffalse 4476 . . . . . 6 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))) = (𝐹‘((2 · 𝑥) − 1)))
2422, 23eqtr4d 2859 . . . . 5 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))
2521, 24pm2.61d1 182 . . . 4 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))
2625mpteq2dva 5161 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))))
27 cntop2 21849 . . . . . . . 8 (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
2827adantr 483 . . . . . . 7 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐽 ∈ Top)
29 toptopon2 21526 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
3028, 29sylib 220 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐽 ∈ (TopOn‘ 𝐽))
311pcoptcl 23625 . . . . . 6 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑌 𝐽) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
3230, 11, 31syl2anc 586 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
3332simp1d 1138 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝑃 ∈ (II Cn 𝐽))
34 simpl 485 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐹 ∈ (II Cn 𝐽))
3533, 34pcoval 23615 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝𝐽)𝐹) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1)))))
36 iffalse 4476 . . . . . . . . 9 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = ((2 · 𝑥) − 1))
3736adantl 484 . . . . . . . 8 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = ((2 · 𝑥) − 1))
38 elii2 23540 . . . . . . . . 9 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → 𝑥 ∈ ((1 / 2)[,]1))
39 iihalf2 23537 . . . . . . . . 9 (𝑥 ∈ ((1 / 2)[,]1) → ((2 · 𝑥) − 1) ∈ (0[,]1))
4038, 39syl 17 . . . . . . . 8 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((2 · 𝑥) − 1) ∈ (0[,]1))
4137, 40eqeltrd 2913 . . . . . . 7 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1))
4241ex 415 . . . . . 6 (𝑥 ∈ (0[,]1) → (¬ 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1)))
43 iftrue 4473 . . . . . . 7 (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = 0)
4443, 8eqeltrdi 2921 . . . . . 6 (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1))
4542, 44pm2.61d2 183 . . . . 5 (𝑥 ∈ (0[,]1) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1))
4645adantl 484 . . . 4 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1))
47 eqid 2821 . . . . 5 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))
4847a1i 11 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))))
497feqmptd 6733 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐹 = (𝑦 ∈ (0[,]1) ↦ (𝐹𝑦)))
50 fveq2 6670 . . . . 5 (𝑦 = if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) → (𝐹𝑦) = (𝐹‘if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))))
51 fvif 6686 . . . . 5 (𝐹‘if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))
5250, 51syl6eq 2872 . . . 4 (𝑦 = if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) → (𝐹𝑦) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))
5346, 48, 49, 52fmptco 6891 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))))
5426, 35, 533eqtr4d 2866 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝𝐽)𝐹) = (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))))
55 iitopon 23487 . . . . 5 II ∈ (TopOn‘(0[,]1))
5655a1i 11 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → II ∈ (TopOn‘(0[,]1)))
5756cnmptid 22269 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
588a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 0 ∈ (0[,]1))
5956, 56, 58cnmptc 22270 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn II))
60 eqid 2821 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
61 eqid 2821 . . . . 5 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
62 eqid 2821 . . . . 5 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
63 dfii2 23490 . . . . 5 II = ((topGen‘ran (,)) ↾t (0[,]1))
64 0re 10643 . . . . . 6 0 ∈ ℝ
6564a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 0 ∈ ℝ)
66 1re 10641 . . . . . 6 1 ∈ ℝ
6766a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 1 ∈ ℝ)
68 halfre 11852 . . . . . . 7 (1 / 2) ∈ ℝ
69 halfge0 11855 . . . . . . 7 0 ≤ (1 / 2)
70 halflt1 11856 . . . . . . . 8 (1 / 2) < 1
7168, 66, 70ltleii 10763 . . . . . . 7 (1 / 2) ≤ 1
72 elicc01 12855 . . . . . . 7 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
7368, 69, 71, 72mpbir3an 1337 . . . . . 6 (1 / 2) ∈ (0[,]1)
7473a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (1 / 2) ∈ (0[,]1))
75 simprl 769 . . . . . . . . 9 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2))
7675oveq2d 7172 . . . . . . . 8 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 / 2)))
77 2cn 11713 . . . . . . . . 9 2 ∈ ℂ
78 2ne0 11742 . . . . . . . . 9 2 ≠ 0
7977, 78recidi 11371 . . . . . . . 8 (2 · (1 / 2)) = 1
8076, 79syl6eq 2872 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = 1)
8180oveq1d 7171 . . . . . 6 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((2 · 𝑦) − 1) = (1 − 1))
82 1m1e0 11710 . . . . . 6 (1 − 1) = 0
8381, 82syl6req 2873 . . . . 5 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 0 = ((2 · 𝑦) − 1))
84 retopon 23372 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
85 iccssre 12819 . . . . . . . . 9 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
8664, 68, 85mp2an 690 . . . . . . . 8 (0[,](1 / 2)) ⊆ ℝ
87 resttopon 21769 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
8884, 86, 87mp2an 690 . . . . . . 7 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
8988a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
9089, 56, 56, 58cnmpt2c 22278 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 0) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
91 iccssre 12819 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
9268, 66, 91mp2an 690 . . . . . . . 8 ((1 / 2)[,]1) ⊆ ℝ
93 resttopon 21769 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
9484, 92, 93mp2an 690 . . . . . . 7 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
9594a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
9695, 56cnmpt1st 22276 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
9762iihalf2cn 23538 . . . . . . 7 (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II)
9897a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
99 oveq2 7164 . . . . . . 7 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
10099oveq1d 7171 . . . . . 6 (𝑥 = 𝑦 → ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1))
10195, 56, 96, 95, 98, 100cnmpt21 22279 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ ((2 · 𝑦) − 1)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
10260, 61, 62, 63, 65, 67, 74, 56, 83, 90, 101cnmpopc 23532 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), 0, ((2 · 𝑦) − 1))) ∈ ((II ×t II) Cn II))
103 breq1 5069 . . . . . 6 (𝑦 = 𝑥 → (𝑦 ≤ (1 / 2) ↔ 𝑥 ≤ (1 / 2)))
104 oveq2 7164 . . . . . . 7 (𝑦 = 𝑥 → (2 · 𝑦) = (2 · 𝑥))
105104oveq1d 7171 . . . . . 6 (𝑦 = 𝑥 → ((2 · 𝑦) − 1) = ((2 · 𝑥) − 1))
106103, 105ifbieq2d 4492 . . . . 5 (𝑦 = 𝑥 → if(𝑦 ≤ (1 / 2), 0, ((2 · 𝑦) − 1)) = if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))
107106adantr 483 . . . 4 ((𝑦 = 𝑥𝑧 = 0) → if(𝑦 ≤ (1 / 2), 0, ((2 · 𝑦) − 1)) = if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))
10856, 57, 59, 56, 56, 102, 107cnmpt12 22275 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) ∈ (II Cn II))
109 id 22 . . . . . . 7 (𝑥 = 0 → 𝑥 = 0)
110109, 69eqbrtrdi 5105 . . . . . 6 (𝑥 = 0 → 𝑥 ≤ (1 / 2))
111110, 43syl 17 . . . . 5 (𝑥 = 0 → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = 0)
112 c0ex 10635 . . . . 5 0 ∈ V
113111, 47, 112fvmpt 6768 . . . 4 (0 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))‘0) = 0)
1148, 113mp1i 13 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))‘0) = 0)
115 1elunit 12857 . . . 4 1 ∈ (0[,]1)
11668, 66ltnlei 10761 . . . . . . . . 9 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
11770, 116mpbi 232 . . . . . . . 8 ¬ 1 ≤ (1 / 2)
118 breq1 5069 . . . . . . . 8 (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
119117, 118mtbiri 329 . . . . . . 7 (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2))
120119, 36syl 17 . . . . . 6 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = ((2 · 𝑥) − 1))
121 oveq2 7164 . . . . . . . . 9 (𝑥 = 1 → (2 · 𝑥) = (2 · 1))
122 2t1e2 11801 . . . . . . . . 9 (2 · 1) = 2
123121, 122syl6eq 2872 . . . . . . . 8 (𝑥 = 1 → (2 · 𝑥) = 2)
124123oveq1d 7171 . . . . . . 7 (𝑥 = 1 → ((2 · 𝑥) − 1) = (2 − 1))
125 2m1e1 11764 . . . . . . 7 (2 − 1) = 1
126124, 125syl6eq 2872 . . . . . 6 (𝑥 = 1 → ((2 · 𝑥) − 1) = 1)
127120, 126eqtrd 2856 . . . . 5 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = 1)
128 1ex 10637 . . . . 5 1 ∈ V
129127, 47, 128fvmpt 6768 . . . 4 (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))‘1) = 1)
130115, 129mp1i 13 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))‘1) = 1)
13134, 108, 114, 130reparpht 23602 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))))( ≃ph𝐽)𝐹)
13254, 131eqbrtrd 5088 1 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝𝐽)𝐹)( ≃ph𝐽)𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3936  ifcif 4467  {csn 4567   cuni 4838   class class class wbr 5066  cmpt 5146   × cxp 5553  ran crn 5556  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   · cmul 10542   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  2c2 11693  (,)cioo 12739  [,]cicc 12742  t crest 16694  topGenctg 16711  Topctop 21501  TopOnctopon 21518   Cn ccn 21832  IIcii 23483  phcphtpc 23573  *𝑝cpco 23604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-cn 21835  df-cnp 21836  df-tx 22170  df-hmeo 22363  df-xms 22930  df-ms 22931  df-tms 22932  df-ii 23485  df-htpy 23574  df-phtpy 23575  df-phtpc 23596  df-pco 23609
This theorem is referenced by:  pcophtb  23633  pi1grplem  23653  pi1xfr  23659  pi1xfrcnvlem  23660
  Copyright terms: Public domain W3C validator