MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quad2 Structured version   Visualization version   GIF version

Theorem quad2 24283
Description: The quadratic equation, without specifying the particular branch 𝐷 to the square root. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
quad.a (𝜑𝐴 ∈ ℂ)
quad.z (𝜑𝐴 ≠ 0)
quad.b (𝜑𝐵 ∈ ℂ)
quad.c (𝜑𝐶 ∈ ℂ)
quad.x (𝜑𝑋 ∈ ℂ)
quad2.d (𝜑𝐷 ∈ ℂ)
quad2.2 (𝜑 → (𝐷↑2) = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
Assertion
Ref Expression
quad2 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵𝐷) / (2 · 𝐴)))))

Proof of Theorem quad2
StepHypRef Expression
1 2cn 10844 . . . . . . . 8 2 ∈ ℂ
2 quad.a . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3 mulcl 9773 . . . . . . . 8 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
41, 2, 3sylancr 693 . . . . . . 7 (𝜑 → (2 · 𝐴) ∈ ℂ)
5 quad.x . . . . . . 7 (𝜑𝑋 ∈ ℂ)
64, 5mulcld 9813 . . . . . 6 (𝜑 → ((2 · 𝐴) · 𝑋) ∈ ℂ)
7 quad.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
86, 7addcld 9812 . . . . 5 (𝜑 → (((2 · 𝐴) · 𝑋) + 𝐵) ∈ ℂ)
98sqcld 12733 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) ∈ ℂ)
10 quad2.d . . . . 5 (𝜑𝐷 ∈ ℂ)
1110sqcld 12733 . . . 4 (𝜑 → (𝐷↑2) ∈ ℂ)
129, 11subeq0ad 10151 . . 3 (𝜑 → ((((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = 0 ↔ ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (𝐷↑2)))
135sqcld 12733 . . . . . . 7 (𝜑 → (𝑋↑2) ∈ ℂ)
142, 13mulcld 9813 . . . . . 6 (𝜑 → (𝐴 · (𝑋↑2)) ∈ ℂ)
157, 5mulcld 9813 . . . . . . 7 (𝜑 → (𝐵 · 𝑋) ∈ ℂ)
16 quad.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
1715, 16addcld 9812 . . . . . 6 (𝜑 → ((𝐵 · 𝑋) + 𝐶) ∈ ℂ)
1814, 17addcld 9812 . . . . 5 (𝜑 → ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) ∈ ℂ)
19 0cnd 9786 . . . . 5 (𝜑 → 0 ∈ ℂ)
20 4cn 10851 . . . . . 6 4 ∈ ℂ
21 mulcl 9773 . . . . . 6 ((4 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (4 · 𝐴) ∈ ℂ)
2220, 2, 21sylancr 693 . . . . 5 (𝜑 → (4 · 𝐴) ∈ ℂ)
2320a1i 11 . . . . . 6 (𝜑 → 4 ∈ ℂ)
24 4ne0 10870 . . . . . . 7 4 ≠ 0
2524a1i 11 . . . . . 6 (𝜑 → 4 ≠ 0)
26 quad.z . . . . . 6 (𝜑𝐴 ≠ 0)
2723, 2, 25, 26mulne0d 10426 . . . . 5 (𝜑 → (4 · 𝐴) ≠ 0)
2818, 19, 22, 27mulcand 10407 . . . 4 (𝜑 → (((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = ((4 · 𝐴) · 0) ↔ ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0))
296sqcld 12733 . . . . . . . 8 (𝜑 → (((2 · 𝐴) · 𝑋)↑2) ∈ ℂ)
306, 7mulcld 9813 . . . . . . . . 9 (𝜑 → (((2 · 𝐴) · 𝑋) · 𝐵) ∈ ℂ)
31 mulcl 9773 . . . . . . . . 9 ((2 ∈ ℂ ∧ (((2 · 𝐴) · 𝑋) · 𝐵) ∈ ℂ) → (2 · (((2 · 𝐴) · 𝑋) · 𝐵)) ∈ ℂ)
321, 30, 31sylancr 693 . . . . . . . 8 (𝜑 → (2 · (((2 · 𝐴) · 𝑋) · 𝐵)) ∈ ℂ)
332, 16mulcld 9813 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
34 mulcl 9773 . . . . . . . . 9 ((4 ∈ ℂ ∧ (𝐴 · 𝐶) ∈ ℂ) → (4 · (𝐴 · 𝐶)) ∈ ℂ)
3520, 33, 34sylancr 693 . . . . . . . 8 (𝜑 → (4 · (𝐴 · 𝐶)) ∈ ℂ)
3629, 32, 35addassd 9815 . . . . . . 7 (𝜑 → (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (4 · (𝐴 · 𝐶))) = ((((2 · 𝐴) · 𝑋)↑2) + ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶)))))
377sqcld 12733 . . . . . . . 8 (𝜑 → (𝐵↑2) ∈ ℂ)
3829, 32addcld 9812 . . . . . . . 8 (𝜑 → ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) ∈ ℂ)
3937, 38, 35pnncand 10180 . . . . . . 7 (𝜑 → (((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))) − ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) = (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (4 · (𝐴 · 𝐶))))
404, 5sqmuld 12747 . . . . . . . . 9 (𝜑 → (((2 · 𝐴) · 𝑋)↑2) = (((2 · 𝐴)↑2) · (𝑋↑2)))
41 sq2 12687 . . . . . . . . . . . . 13 (2↑2) = 4
4241a1i 11 . . . . . . . . . . . 12 (𝜑 → (2↑2) = 4)
432sqvald 12732 . . . . . . . . . . . 12 (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
4442, 43oveq12d 6443 . . . . . . . . . . 11 (𝜑 → ((2↑2) · (𝐴↑2)) = (4 · (𝐴 · 𝐴)))
45 sqmul 12653 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((2 · 𝐴)↑2) = ((2↑2) · (𝐴↑2)))
461, 2, 45sylancr 693 . . . . . . . . . . 11 (𝜑 → ((2 · 𝐴)↑2) = ((2↑2) · (𝐴↑2)))
4723, 2, 2mulassd 9816 . . . . . . . . . . 11 (𝜑 → ((4 · 𝐴) · 𝐴) = (4 · (𝐴 · 𝐴)))
4844, 46, 473eqtr4d 2558 . . . . . . . . . 10 (𝜑 → ((2 · 𝐴)↑2) = ((4 · 𝐴) · 𝐴))
4948oveq1d 6440 . . . . . . . . 9 (𝜑 → (((2 · 𝐴)↑2) · (𝑋↑2)) = (((4 · 𝐴) · 𝐴) · (𝑋↑2)))
5022, 2, 13mulassd 9816 . . . . . . . . 9 (𝜑 → (((4 · 𝐴) · 𝐴) · (𝑋↑2)) = ((4 · 𝐴) · (𝐴 · (𝑋↑2))))
5140, 49, 503eqtrrd 2553 . . . . . . . 8 (𝜑 → ((4 · 𝐴) · (𝐴 · (𝑋↑2))) = (((2 · 𝐴) · 𝑋)↑2))
5222, 15, 16adddid 9817 . . . . . . . . 9 (𝜑 → ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶)) = (((4 · 𝐴) · (𝐵 · 𝑋)) + ((4 · 𝐴) · 𝐶)))
53 2t2e4 10930 . . . . . . . . . . . . . . . . 17 (2 · 2) = 4
5453oveq1i 6435 . . . . . . . . . . . . . . . 16 ((2 · 2) · 𝐴) = (4 · 𝐴)
551a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
5655, 55, 2mulassd 9816 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)))
5754, 56syl5eqr 2562 . . . . . . . . . . . . . . 15 (𝜑 → (4 · 𝐴) = (2 · (2 · 𝐴)))
5857oveq1d 6440 . . . . . . . . . . . . . 14 (𝜑 → ((4 · 𝐴) · 𝐵) = ((2 · (2 · 𝐴)) · 𝐵))
5955, 4, 7mulassd 9816 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (2 · 𝐴)) · 𝐵) = (2 · ((2 · 𝐴) · 𝐵)))
6058, 59eqtrd 2548 . . . . . . . . . . . . 13 (𝜑 → ((4 · 𝐴) · 𝐵) = (2 · ((2 · 𝐴) · 𝐵)))
6160oveq1d 6440 . . . . . . . . . . . 12 (𝜑 → (((4 · 𝐴) · 𝐵) · 𝑋) = ((2 · ((2 · 𝐴) · 𝐵)) · 𝑋))
624, 7mulcld 9813 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝐴) · 𝐵) ∈ ℂ)
6355, 62, 5mulassd 9816 . . . . . . . . . . . 12 (𝜑 → ((2 · ((2 · 𝐴) · 𝐵)) · 𝑋) = (2 · (((2 · 𝐴) · 𝐵) · 𝑋)))
6461, 63eqtrd 2548 . . . . . . . . . . 11 (𝜑 → (((4 · 𝐴) · 𝐵) · 𝑋) = (2 · (((2 · 𝐴) · 𝐵) · 𝑋)))
6522, 7, 5mulassd 9816 . . . . . . . . . . 11 (𝜑 → (((4 · 𝐴) · 𝐵) · 𝑋) = ((4 · 𝐴) · (𝐵 · 𝑋)))
664, 7, 5mul32d 9995 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝐴) · 𝐵) · 𝑋) = (((2 · 𝐴) · 𝑋) · 𝐵))
6766oveq2d 6441 . . . . . . . . . . 11 (𝜑 → (2 · (((2 · 𝐴) · 𝐵) · 𝑋)) = (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))
6864, 65, 673eqtr3d 2556 . . . . . . . . . 10 (𝜑 → ((4 · 𝐴) · (𝐵 · 𝑋)) = (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))
6923, 2, 16mulassd 9816 . . . . . . . . . 10 (𝜑 → ((4 · 𝐴) · 𝐶) = (4 · (𝐴 · 𝐶)))
7068, 69oveq12d 6443 . . . . . . . . 9 (𝜑 → (((4 · 𝐴) · (𝐵 · 𝑋)) + ((4 · 𝐴) · 𝐶)) = ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶))))
7152, 70eqtrd 2548 . . . . . . . 8 (𝜑 → ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶)) = ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶))))
7251, 71oveq12d 6443 . . . . . . 7 (𝜑 → (((4 · 𝐴) · (𝐴 · (𝑋↑2))) + ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶))) = ((((2 · 𝐴) · 𝑋)↑2) + ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶)))))
7336, 39, 723eqtr4rd 2559 . . . . . 6 (𝜑 → (((4 · 𝐴) · (𝐴 · (𝑋↑2))) + ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶))) = (((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))) − ((𝐵↑2) − (4 · (𝐴 · 𝐶)))))
7422, 14, 17adddid 9817 . . . . . 6 (𝜑 → ((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = (((4 · 𝐴) · (𝐴 · (𝑋↑2))) + ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶))))
75 binom2 12706 . . . . . . . . 9 ((((2 · 𝐴) · 𝑋) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (𝐵↑2)))
766, 7, 75syl2anc 690 . . . . . . . 8 (𝜑 → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (𝐵↑2)))
7738, 37addcomd 9987 . . . . . . . 8 (𝜑 → (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (𝐵↑2)) = ((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))))
7876, 77eqtrd 2548 . . . . . . 7 (𝜑 → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = ((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))))
79 quad2.2 . . . . . . 7 (𝜑 → (𝐷↑2) = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
8078, 79oveq12d 6443 . . . . . 6 (𝜑 → (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = (((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))) − ((𝐵↑2) − (4 · (𝐴 · 𝐶)))))
8173, 74, 803eqtr4d 2558 . . . . 5 (𝜑 → ((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)))
8222mul01d 9984 . . . . 5 (𝜑 → ((4 · 𝐴) · 0) = 0)
8381, 82eqeq12d 2529 . . . 4 (𝜑 → (((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = ((4 · 𝐴) · 0) ↔ (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = 0))
8428, 83bitr3d 268 . . 3 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = 0))
856, 7subnegd 10148 . . . . 5 (𝜑 → (((2 · 𝐴) · 𝑋) − -𝐵) = (((2 · 𝐴) · 𝑋) + 𝐵))
8685oveq1d 6440 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = ((((2 · 𝐴) · 𝑋) + 𝐵)↑2))
8786eqeq1d 2516 . . 3 (𝜑 → (((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2) ↔ ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (𝐷↑2)))
8812, 84, 873bitr4d 298 . 2 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ ((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2)))
897negcld 10128 . . . 4 (𝜑 → -𝐵 ∈ ℂ)
906, 89subcld 10141 . . 3 (𝜑 → (((2 · 𝐴) · 𝑋) − -𝐵) ∈ ℂ)
91 sqeqor 12705 . . 3 (((((2 · 𝐴) · 𝑋) − -𝐵) ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2) ↔ ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ∨ (((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷)))
9290, 10, 91syl2anc 690 . 2 (𝜑 → (((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2) ↔ ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ∨ (((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷)))
936, 89, 10subaddd 10159 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ↔ (-𝐵 + 𝐷) = ((2 · 𝐴) · 𝑋)))
9489, 10addcld 9812 . . . . . 6 (𝜑 → (-𝐵 + 𝐷) ∈ ℂ)
95 2ne0 10866 . . . . . . . 8 2 ≠ 0
9695a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
9755, 2, 96, 26mulne0d 10426 . . . . . 6 (𝜑 → (2 · 𝐴) ≠ 0)
9894, 4, 5, 97divmuld 10570 . . . . 5 (𝜑 → (((-𝐵 + 𝐷) / (2 · 𝐴)) = 𝑋 ↔ ((2 · 𝐴) · 𝑋) = (-𝐵 + 𝐷)))
99 eqcom 2521 . . . . 5 (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ↔ ((-𝐵 + 𝐷) / (2 · 𝐴)) = 𝑋)
100 eqcom 2521 . . . . 5 ((-𝐵 + 𝐷) = ((2 · 𝐴) · 𝑋) ↔ ((2 · 𝐴) · 𝑋) = (-𝐵 + 𝐷))
10198, 99, 1003bitr4g 301 . . . 4 (𝜑 → (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ↔ (-𝐵 + 𝐷) = ((2 · 𝐴) · 𝑋)))
10293, 101bitr4d 269 . . 3 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴))))
10389, 10negsubd 10147 . . . . 5 (𝜑 → (-𝐵 + -𝐷) = (-𝐵𝐷))
104103eqeq1d 2516 . . . 4 (𝜑 → ((-𝐵 + -𝐷) = ((2 · 𝐴) · 𝑋) ↔ (-𝐵𝐷) = ((2 · 𝐴) · 𝑋)))
10510negcld 10128 . . . . 5 (𝜑 → -𝐷 ∈ ℂ)
1066, 89, 105subaddd 10159 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷 ↔ (-𝐵 + -𝐷) = ((2 · 𝐴) · 𝑋)))
10789, 10subcld 10141 . . . . . 6 (𝜑 → (-𝐵𝐷) ∈ ℂ)
108107, 4, 5, 97divmuld 10570 . . . . 5 (𝜑 → (((-𝐵𝐷) / (2 · 𝐴)) = 𝑋 ↔ ((2 · 𝐴) · 𝑋) = (-𝐵𝐷)))
109 eqcom 2521 . . . . 5 (𝑋 = ((-𝐵𝐷) / (2 · 𝐴)) ↔ ((-𝐵𝐷) / (2 · 𝐴)) = 𝑋)
110 eqcom 2521 . . . . 5 ((-𝐵𝐷) = ((2 · 𝐴) · 𝑋) ↔ ((2 · 𝐴) · 𝑋) = (-𝐵𝐷))
111108, 109, 1103bitr4g 301 . . . 4 (𝜑 → (𝑋 = ((-𝐵𝐷) / (2 · 𝐴)) ↔ (-𝐵𝐷) = ((2 · 𝐴) · 𝑋)))
112104, 106, 1113bitr4d 298 . . 3 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷𝑋 = ((-𝐵𝐷) / (2 · 𝐴))))
113102, 112orbi12d 741 . 2 (𝜑 → (((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ∨ (((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷) ↔ (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵𝐷) / (2 · 𝐴)))))
11488, 92, 1133bitrd 292 1 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵𝐷) / (2 · 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381   = wceq 1474  wcel 1938  wne 2684  (class class class)co 6425  cc 9687  0cc0 9689   + caddc 9692   · cmul 9694  cmin 10015  -cneg 10016   / cdiv 10431  2c2 10823  4c4 10825  cexp 12587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6721  ax-cnex 9745  ax-resscn 9746  ax-1cn 9747  ax-icn 9748  ax-addcl 9749  ax-addrcl 9750  ax-mulcl 9751  ax-mulrcl 9752  ax-mulcom 9753  ax-addass 9754  ax-mulass 9755  ax-distr 9756  ax-i2m1 9757  ax-1ne0 9758  ax-1rid 9759  ax-rnegex 9760  ax-rrecex 9761  ax-cnre 9762  ax-pre-lttri 9763  ax-pre-lttrn 9764  ax-pre-ltadd 9765  ax-pre-mulgt0 9766
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-om 6832  df-2nd 6933  df-wrecs 7167  df-recs 7229  df-rdg 7267  df-er 7503  df-en 7716  df-dom 7717  df-sdom 7718  df-pnf 9829  df-mnf 9830  df-xr 9831  df-ltxr 9832  df-le 9833  df-sub 10017  df-neg 10018  df-div 10432  df-nn 10774  df-2 10832  df-3 10833  df-4 10834  df-n0 11046  df-z 11117  df-uz 11424  df-seq 12529  df-exp 12588
This theorem is referenced by:  quad  24284  dcubic2  24288  dquartlem1  24295
  Copyright terms: Public domain W3C validator