HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spansncvi Structured version   Visualization version   GIF version

Theorem spansncvi 28381
Description: Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of [Kalmbach] p. 153. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spansncv.1 𝐴C
spansncv.2 𝐵C
spansncv.3 𝐶 ∈ ℋ
Assertion
Ref Expression
spansncvi ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐵 = (𝐴 (span‘{𝐶})))

Proof of Theorem spansncvi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . 2 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐵 ⊆ (𝐴 (span‘{𝐶})))
2 pssss 3685 . . . 4 (𝐴𝐵𝐴𝐵)
32adantr 481 . . 3 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐴𝐵)
4 pssnel 4016 . . . . . . 7 (𝐴𝐵 → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴))
5 ssel2 3582 . . . . . . . . . . . 12 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐴 (span‘{𝐶})))
6 spansncv.1 . . . . . . . . . . . . . . . 16 𝐴C
7 spansncv.3 . . . . . . . . . . . . . . . 16 𝐶 ∈ ℋ
86, 7spansnji 28375 . . . . . . . . . . . . . . 15 (𝐴 + (span‘{𝐶})) = (𝐴 (span‘{𝐶}))
98eleq2i 2690 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 + (span‘{𝐶})) ↔ 𝑥 ∈ (𝐴 (span‘{𝐶})))
107spansnchi 28291 . . . . . . . . . . . . . . 15 (span‘{𝐶}) ∈ C
116, 10chseli 28188 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 + (span‘{𝐶})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{𝐶})𝑥 = (𝑦 + 𝑧))
129, 11bitr3i 266 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴 (span‘{𝐶})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{𝐶})𝑥 = (𝑦 + 𝑧))
13 eleq1 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (𝑦 + 𝑧) → (𝑥𝐵 ↔ (𝑦 + 𝑧) ∈ 𝐵))
1413biimpac 503 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥𝐵𝑥 = (𝑦 + 𝑧)) → (𝑦 + 𝑧) ∈ 𝐵)
152sselda 3587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴𝐵𝑦𝐴) → 𝑦𝐵)
16 spansncv.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐵C
1716chshii 27954 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐵S
18 shsubcl 27947 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵S ∧ (𝑦 + 𝑧) ∈ 𝐵𝑦𝐵) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
1917, 18mp3an1 1408 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦 + 𝑧) ∈ 𝐵𝑦𝐵) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
2014, 15, 19syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥𝐵𝑥 = (𝑦 + 𝑧)) ∧ (𝐴𝐵𝑦𝐴)) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
2120exp43 639 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝐵 → (𝑥 = (𝑦 + 𝑧) → (𝐴𝐵 → (𝑦𝐴 → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵))))
2221com14 96 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐴 → (𝑥 = (𝑦 + 𝑧) → (𝐴𝐵 → (𝑥𝐵 → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵))))
2322imp45 622 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐴 ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵))) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
246cheli 27959 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝐴𝑦 ∈ ℋ)
2510cheli 27959 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ (span‘{𝐶}) → 𝑧 ∈ ℋ)
26 hvpncan2 27767 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) − 𝑦) = 𝑧)
2724, 25, 26syl2an 494 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → ((𝑦 + 𝑧) − 𝑦) = 𝑧)
2827eleq1d 2683 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → (((𝑦 + 𝑧) − 𝑦) ∈ 𝐵𝑧𝐵))
2923, 28syl5ib 234 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → ((𝑦𝐴 ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵))) → 𝑧𝐵))
3029imp 445 . . . . . . . . . . . . . . . . . . . 20 (((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ (𝑦𝐴 ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵)))) → 𝑧𝐵)
3130anandis 872 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝐴 ∧ (𝑧 ∈ (span‘{𝐶}) ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵)))) → 𝑧𝐵)
3231exp45 641 . . . . . . . . . . . . . . . . . 18 (𝑦𝐴 → (𝑧 ∈ (span‘{𝐶}) → (𝑥 = (𝑦 + 𝑧) → ((𝐴𝐵𝑥𝐵) → 𝑧𝐵))))
3332imp41 618 . . . . . . . . . . . . . . . . 17 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ (𝐴𝐵𝑥𝐵)) → 𝑧𝐵)
3433adantrr 752 . . . . . . . . . . . . . . . 16 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ((𝐴𝐵𝑥𝐵) ∧ ¬ 𝑥𝐴)) → 𝑧𝐵)
35 oveq2 6618 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 0 → (𝑦 + 𝑧) = (𝑦 + 0))
36 ax-hvaddid 27731 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℋ → (𝑦 + 0) = 𝑦)
3724, 36syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝐴 → (𝑦 + 0) = 𝑦)
3835, 37sylan9eqr 2677 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦𝐴𝑧 = 0) → (𝑦 + 𝑧) = 𝑦)
3938eqeq2d 2631 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑧 = 0) → (𝑥 = (𝑦 + 𝑧) ↔ 𝑥 = 𝑦))
40 eleq1a 2693 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦𝐴 → (𝑥 = 𝑦𝑥𝐴))
4140adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑧 = 0) → (𝑥 = 𝑦𝑥𝐴))
4239, 41sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝐴𝑧 = 0) → (𝑥 = (𝑦 + 𝑧) → 𝑥𝐴))
4342impancom 456 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝐴𝑥 = (𝑦 + 𝑧)) → (𝑧 = 0𝑥𝐴))
4443necon3bd 2804 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐴𝑥 = (𝑦 + 𝑧)) → (¬ 𝑥𝐴𝑧 ≠ 0))
4544imp 445 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦𝐴𝑥 = (𝑦 + 𝑧)) ∧ ¬ 𝑥𝐴) → 𝑧 ≠ 0)
46 spansnss 28300 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵S𝑧𝐵) → (span‘{𝑧}) ⊆ 𝐵)
4717, 46mpan 705 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝐵 → (span‘{𝑧}) ⊆ 𝐵)
48 spansneleq 28299 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐶 ∈ ℋ ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝐶}) → (span‘{𝑧}) = (span‘{𝐶})))
497, 48mpan 705 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ≠ 0 → (𝑧 ∈ (span‘{𝐶}) → (span‘{𝑧}) = (span‘{𝐶})))
5049imp 445 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ≠ 0𝑧 ∈ (span‘{𝐶})) → (span‘{𝑧}) = (span‘{𝐶}))
5150sseq1d 3616 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ≠ 0𝑧 ∈ (span‘{𝐶})) → ((span‘{𝑧}) ⊆ 𝐵 ↔ (span‘{𝐶}) ⊆ 𝐵))
5247, 51syl5ib 234 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ≠ 0𝑧 ∈ (span‘{𝐶})) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5352ancoms 469 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ (span‘{𝐶}) ∧ 𝑧 ≠ 0) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5445, 53sylan2 491 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ (span‘{𝐶}) ∧ ((𝑦𝐴𝑥 = (𝑦 + 𝑧)) ∧ ¬ 𝑥𝐴)) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5554exp44 640 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (span‘{𝐶}) → (𝑦𝐴 → (𝑥 = (𝑦 + 𝑧) → (¬ 𝑥𝐴 → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵)))))
5655com12 32 . . . . . . . . . . . . . . . . . 18 (𝑦𝐴 → (𝑧 ∈ (span‘{𝐶}) → (𝑥 = (𝑦 + 𝑧) → (¬ 𝑥𝐴 → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵)))))
5756imp41 618 . . . . . . . . . . . . . . . . 17 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ¬ 𝑥𝐴) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5857adantrl 751 . . . . . . . . . . . . . . . 16 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ((𝐴𝐵𝑥𝐵) ∧ ¬ 𝑥𝐴)) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5934, 58mpd 15 . . . . . . . . . . . . . . 15 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ((𝐴𝐵𝑥𝐵) ∧ ¬ 𝑥𝐴)) → (span‘{𝐶}) ⊆ 𝐵)
6059exp43 639 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → (𝑥 = (𝑦 + 𝑧) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵))))
6160rexlimivv 3030 . . . . . . . . . . . . 13 (∃𝑦𝐴𝑧 ∈ (span‘{𝐶})𝑥 = (𝑦 + 𝑧) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵)))
6212, 61sylbi 207 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 (span‘{𝐶})) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵)))
635, 62syl 17 . . . . . . . . . . 11 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝑥𝐵) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵)))
6463imp 445 . . . . . . . . . 10 (((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝑥𝐵) ∧ (𝐴𝐵𝑥𝐵)) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵))
6564anandirs 873 . . . . . . . . 9 (((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) ∧ 𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵))
6665expimpd 628 . . . . . . . 8 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) → ((𝑥𝐵 ∧ ¬ 𝑥𝐴) → (span‘{𝐶}) ⊆ 𝐵))
6766exlimdv 1858 . . . . . . 7 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) → (∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴) → (span‘{𝐶}) ⊆ 𝐵))
684, 67syl5 34 . . . . . 6 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) → (𝐴𝐵 → (span‘{𝐶}) ⊆ 𝐵))
6968ex 450 . . . . 5 (𝐵 ⊆ (𝐴 (span‘{𝐶})) → (𝐴𝐵 → (𝐴𝐵 → (span‘{𝐶}) ⊆ 𝐵)))
7069pm2.43d 53 . . . 4 (𝐵 ⊆ (𝐴 (span‘{𝐶})) → (𝐴𝐵 → (span‘{𝐶}) ⊆ 𝐵))
7170impcom 446 . . 3 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → (span‘{𝐶}) ⊆ 𝐵)
726, 10, 16chlubii 28201 . . 3 ((𝐴𝐵 ∧ (span‘{𝐶}) ⊆ 𝐵) → (𝐴 (span‘{𝐶})) ⊆ 𝐵)
733, 71, 72syl2anc 692 . 2 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → (𝐴 (span‘{𝐶})) ⊆ 𝐵)
741, 73eqssd 3604 1 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐵 = (𝐴 (span‘{𝐶})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wex 1701  wcel 1987  wne 2790  wrex 2908  wss 3559  wpss 3560  {csn 4153  cfv 5852  (class class class)co 6610  chil 27646   + cva 27647  0c0v 27651   cmv 27652   S csh 27655   C cch 27656   + cph 27658  spancspn 27659   chj 27660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cc 9209  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968  ax-hilex 27726  ax-hfvadd 27727  ax-hvcom 27728  ax-hvass 27729  ax-hv0cl 27730  ax-hvaddid 27731  ax-hfvmul 27732  ax-hvmulid 27733  ax-hvmulass 27734  ax-hvdistr1 27735  ax-hvdistr2 27736  ax-hvmul0 27737  ax-hfi 27806  ax-his1 27809  ax-his2 27810  ax-his3 27811  ax-his4 27812  ax-hcompl 27929
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-omul 7517  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-acn 8720  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-rlim 14162  df-sum 14359  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-fbas 19675  df-fg 19676  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-nei 20825  df-cn 20954  df-cnp 20955  df-lm 20956  df-haus 21042  df-tx 21288  df-hmeo 21481  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-xms 22048  df-ms 22049  df-tms 22050  df-cfil 22976  df-cau 22977  df-cmet 22978  df-grpo 27217  df-gid 27218  df-ginv 27219  df-gdiv 27220  df-ablo 27269  df-vc 27284  df-nv 27317  df-va 27320  df-ba 27321  df-sm 27322  df-0v 27323  df-vs 27324  df-nmcv 27325  df-ims 27326  df-dip 27426  df-ssp 27447  df-ph 27538  df-cbn 27589  df-hnorm 27695  df-hba 27696  df-hvsub 27698  df-hlim 27699  df-hcau 27700  df-sh 27934  df-ch 27948  df-oc 27979  df-ch0 27980  df-shs 28037  df-span 28038  df-chj 28039  df-pjh 28124
This theorem is referenced by:  spansncv  28382
  Copyright terms: Public domain W3C validator