![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wilthimp | Structured version Visualization version GIF version |
Description: The forward implication of Wilson's theorem wilth 24842 (see wilthlem3 24841), expressed using the modulo operation: For any prime 𝑝 we have (𝑝 − 1)!≡ − 1 (mod 𝑝), see theorem 5.24 in [ApostolNT] p. 116. (Contributed by AV, 21-Jul-2021.) |
Ref | Expression |
---|---|
wilthimp | ⊢ (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wilth 24842 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ 𝑃 ∥ ((!‘(𝑃 − 1)) + 1))) | |
2 | eluz2nn 11764 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℕ) | |
3 | nnm1nn0 11372 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 − 1) ∈ ℕ0) |
5 | 4 | faccld 13111 | . . . . . . 7 ⊢ (𝑃 ∈ (ℤ≥‘2) → (!‘(𝑃 − 1)) ∈ ℕ) |
6 | 5 | nnzd 11519 | . . . . . 6 ⊢ (𝑃 ∈ (ℤ≥‘2) → (!‘(𝑃 − 1)) ∈ ℤ) |
7 | 6 | peano2zd 11523 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → ((!‘(𝑃 − 1)) + 1) ∈ ℤ) |
8 | dvdsval3 15031 | . . . . 5 ⊢ ((𝑃 ∈ ℕ ∧ ((!‘(𝑃 − 1)) + 1) ∈ ℤ) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) ↔ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0)) | |
9 | 2, 7, 8 | syl2anc 694 | . . . 4 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) ↔ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0)) |
10 | 9 | biimpar 501 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)) |
11 | 5 | nncnd 11074 | . . . . . . . . . 10 ⊢ (𝑃 ∈ (ℤ≥‘2) → (!‘(𝑃 − 1)) ∈ ℂ) |
12 | 1cnd 10094 | . . . . . . . . . 10 ⊢ (𝑃 ∈ (ℤ≥‘2) → 1 ∈ ℂ) | |
13 | 11, 12 | jca 553 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → ((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ)) |
14 | 13 | adantr 480 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ)) |
15 | subneg 10368 | . . . . . . . 8 ⊢ (((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1)) | |
16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1)) |
17 | 10, 16 | breqtrrd 4713 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → 𝑃 ∥ ((!‘(𝑃 − 1)) − -1)) |
18 | neg1z 11451 | . . . . . . . . . 10 ⊢ -1 ∈ ℤ | |
19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → -1 ∈ ℤ) |
20 | 2, 6, 19 | 3jca 1261 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ)) |
21 | 20 | adantr 480 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → (𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ)) |
22 | moddvds 15038 | . . . . . . 7 ⊢ ((𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ) → (((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((!‘(𝑃 − 1)) − -1))) | |
23 | 21, 22 | syl 17 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → (((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((!‘(𝑃 − 1)) − -1))) |
24 | 17, 23 | mpbird 247 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
25 | 24 | ex 449 | . . . 4 ⊢ (𝑃 ∈ (ℤ≥‘2) → ((((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0 → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))) |
26 | 9, 25 | sylbid 230 | . . 3 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))) |
27 | 26 | imp 444 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
28 | 1, 27 | sylbi 207 | 1 ⊢ (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 0cc0 9974 1c1 9975 + caddc 9977 − cmin 10304 -cneg 10305 ℕcn 11058 2c2 11108 ℕ0cn0 11330 ℤcz 11415 ℤ≥cuz 11725 mod cmo 12708 !cfa 13100 ∥ cdvds 15027 ℙcprime 15432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 ax-mulf 10054 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-xnn0 11402 df-z 11416 df-dec 11532 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-fl 12633 df-mod 12709 df-seq 12842 df-exp 12901 df-fac 13101 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-dvds 15028 df-gcd 15264 df-prm 15433 df-phi 15518 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-0g 16149 df-gsum 16150 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-grp 17472 df-minusg 17473 df-mulg 17588 df-subg 17638 df-cntz 17796 df-cmn 18241 df-mgp 18536 df-ur 18548 df-ring 18595 df-cring 18596 df-subrg 18826 df-cnfld 19795 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |