![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0lt2o | Unicode version |
Description: Ordinal zero is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) |
Ref | Expression |
---|---|
0lt2o |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4157 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | prid1 3725 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | df2o3 6485 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eleqtrri 2269 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-nul 4156 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 df-un 3158 df-nul 3448 df-sn 3625 df-pr 3626 df-suc 4403 df-1o 6471 df-2o 6472 |
This theorem is referenced by: nnnninf 7187 nnnninfeq 7189 fodjuf 7206 mkvprop 7219 nninfwlporlemd 7233 nninfwlporlem 7234 nninfwlpoimlemg 7236 nninfwlpoimlemginf 7237 2oneel 7318 2omotaplemst 7320 nninfinf 10517 nninfctlemfo 12180 unct 12602 xpsfeq 12931 xpsfval 12934 xpsval 12938 bj-charfun 15369 bj-charfundc 15370 012of 15556 pwle2 15559 subctctexmid 15561 0nninf 15564 nninfsellemcl 15571 nninffeq 15580 |
Copyright terms: Public domain | W3C validator |