| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 0lt2o | Unicode version | ||
| Description: Ordinal zero is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) | 
| Ref | Expression | 
|---|---|
| 0lt2o | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0ex 4160 | 
. . 3
 | |
| 2 | 1 | prid1 3728 | 
. 2
 | 
| 3 | df2o3 6488 | 
. 2
 | |
| 4 | 2, 3 | eleqtrri 2272 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4159 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-nul 3451 df-sn 3628 df-pr 3629 df-suc 4406 df-1o 6474 df-2o 6475 | 
| This theorem is referenced by: nnnninf 7192 nnnninfeq 7194 fodjuf 7211 mkvprop 7224 nninfwlporlemd 7238 nninfwlporlem 7239 nninfwlpoimlemg 7241 nninfwlpoimlemginf 7242 2oneel 7323 2omotaplemst 7325 nninfinf 10535 nninfctlemfo 12207 unct 12659 xpsfeq 12988 xpsfval 12991 xpsval 12995 bj-charfun 15453 bj-charfundc 15454 012of 15640 pwle2 15643 subctctexmid 15645 0nninf 15648 nninfsellemcl 15655 nninffeq 15664 | 
| Copyright terms: Public domain | W3C validator |