| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt2o | Unicode version | ||
| Description: Ordinal zero is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) |
| Ref | Expression |
|---|---|
| 0lt2o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4171 |
. . 3
| |
| 2 | 1 | prid1 3739 |
. 2
|
| 3 | df2o3 6516 |
. 2
| |
| 4 | 2, 3 | eleqtrri 2281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-nul 4170 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-un 3170 df-nul 3461 df-sn 3639 df-pr 3640 df-suc 4418 df-1o 6502 df-2o 6503 |
| This theorem is referenced by: en2 6912 nnnninf 7228 nnnninfeq 7230 fodjuf 7247 mkvprop 7260 nninfwlporlemd 7274 nninfwlporlem 7275 nninfwlpoimlemg 7277 nninfwlpoimlemginf 7278 2oneel 7368 2omotaplemst 7370 nninfinf 10588 nninfctlemfo 12361 unct 12813 xpsfeq 13177 xpsfval 13180 xpsval 13184 bj-charfun 15743 bj-charfundc 15744 012of 15930 2omap 15932 pwle2 15935 subctctexmid 15937 0nninf 15941 nninfsellemcl 15948 nninffeq 15957 |
| Copyright terms: Public domain | W3C validator |