| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt1o | GIF version | ||
| Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| 0lt1o | ⊢ ∅ ∈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . 2 ⊢ ∅ = ∅ | |
| 2 | el1o 6581 | . 2 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
| 3 | 1, 2 | mpbir 146 | 1 ⊢ ∅ ∈ 1o |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 ∅c0 3491 1oc1o 6553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4209 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-sn 3672 df-suc 4461 df-1o 6560 |
| This theorem is referenced by: nnaordex 6672 1domsn 6974 snexxph 7113 difinfsnlem 7262 difinfsn 7263 0ct 7270 ctmlemr 7271 ctssdclemn0 7273 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 iftrueb01 7404 1lt2pi 7523 archnqq 7600 prarloclemarch2 7602 dom1o 16314 pwle2 16323 |
| Copyright terms: Public domain | W3C validator |