![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0lt1o | GIF version |
Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
Ref | Expression |
---|---|
0lt1o | ⊢ ∅ ∈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2100 | . 2 ⊢ ∅ = ∅ | |
2 | el1o 6264 | . 2 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
3 | 1, 2 | mpbir 145 | 1 ⊢ ∅ ∈ 1o |
Colors of variables: wff set class |
Syntax hints: = wceq 1299 ∈ wcel 1448 ∅c0 3310 1oc1o 6236 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-nul 3994 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-dif 3023 df-un 3025 df-nul 3311 df-sn 3480 df-suc 4231 df-1o 6243 |
This theorem is referenced by: nnaordex 6353 1domsn 6642 snexxph 6766 difinfsnlem 6899 difinfsn 6900 0ct 6907 ctmlemr 6908 ctssdclemn0 6910 exmidfodomrlemr 6967 exmidfodomrlemrALT 6968 1lt2pi 7049 archnqq 7126 prarloclemarch2 7128 pwle2 12779 |
Copyright terms: Public domain | W3C validator |