ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0lt1o GIF version

Theorem 0lt1o 6419
Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
0lt1o ∅ ∈ 1o

Proof of Theorem 0lt1o
StepHypRef Expression
1 eqid 2170 . 2 ∅ = ∅
2 el1o 6416 . 2 (∅ ∈ 1o ↔ ∅ = ∅)
31, 2mpbir 145 1 ∅ ∈ 1o
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  c0 3414  1oc1o 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-nul 4115
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-un 3125  df-nul 3415  df-sn 3589  df-suc 4356  df-1o 6395
This theorem is referenced by:  nnaordex  6507  1domsn  6797  snexxph  6927  difinfsnlem  7076  difinfsn  7077  0ct  7084  ctmlemr  7085  ctssdclemn0  7087  exmidfodomrlemr  7179  exmidfodomrlemrALT  7180  1lt2pi  7302  archnqq  7379  prarloclemarch2  7381  pwle2  14031
  Copyright terms: Public domain W3C validator