ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0lt1o GIF version

Theorem 0lt1o 6441
Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
0lt1o ∅ ∈ 1o

Proof of Theorem 0lt1o
StepHypRef Expression
1 eqid 2177 . 2 ∅ = ∅
2 el1o 6438 . 2 (∅ ∈ 1o ↔ ∅ = ∅)
31, 2mpbir 146 1 ∅ ∈ 1o
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  c0 3423  1oc1o 6410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-nul 4130
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-dif 3132  df-un 3134  df-nul 3424  df-sn 3599  df-suc 4372  df-1o 6417
This theorem is referenced by:  nnaordex  6529  1domsn  6819  snexxph  6949  difinfsnlem  7098  difinfsn  7099  0ct  7106  ctmlemr  7107  ctssdclemn0  7109  exmidfodomrlemr  7201  exmidfodomrlemrALT  7202  1lt2pi  7339  archnqq  7416  prarloclemarch2  7418  pwle2  14751
  Copyright terms: Public domain W3C validator