Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0lt1o | GIF version |
Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
Ref | Expression |
---|---|
0lt1o | ⊢ ∅ ∈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . 2 ⊢ ∅ = ∅ | |
2 | el1o 6405 | . 2 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
3 | 1, 2 | mpbir 145 | 1 ⊢ ∅ ∈ 1o |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 ∅c0 3409 1oc1o 6377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-nul 3410 df-sn 3582 df-suc 4349 df-1o 6384 |
This theorem is referenced by: nnaordex 6495 1domsn 6785 snexxph 6915 difinfsnlem 7064 difinfsn 7065 0ct 7072 ctmlemr 7073 ctssdclemn0 7075 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 1lt2pi 7281 archnqq 7358 prarloclemarch2 7360 pwle2 13878 |
Copyright terms: Public domain | W3C validator |