ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0lt1o GIF version

Theorem 0lt1o 6498
Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
0lt1o ∅ ∈ 1o

Proof of Theorem 0lt1o
StepHypRef Expression
1 eqid 2196 . 2 ∅ = ∅
2 el1o 6495 . 2 (∅ ∈ 1o ↔ ∅ = ∅)
31, 2mpbir 146 1 ∅ ∈ 1o
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  c0 3450  1oc1o 6467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-nul 4159
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3451  df-sn 3628  df-suc 4406  df-1o 6474
This theorem is referenced by:  nnaordex  6586  1domsn  6878  snexxph  7016  difinfsnlem  7165  difinfsn  7166  0ct  7173  ctmlemr  7174  ctssdclemn0  7176  exmidfodomrlemr  7269  exmidfodomrlemrALT  7270  1lt2pi  7407  archnqq  7484  prarloclemarch2  7486  pwle2  15643
  Copyright terms: Public domain W3C validator