![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0lt1o | GIF version |
Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
Ref | Expression |
---|---|
0lt1o | ⊢ ∅ ∈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . 2 ⊢ ∅ = ∅ | |
2 | el1o 6490 | . 2 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
3 | 1, 2 | mpbir 146 | 1 ⊢ ∅ ∈ 1o |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 ∅c0 3446 1oc1o 6462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-nul 4155 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-un 3157 df-nul 3447 df-sn 3624 df-suc 4402 df-1o 6469 |
This theorem is referenced by: nnaordex 6581 1domsn 6873 snexxph 7009 difinfsnlem 7158 difinfsn 7159 0ct 7166 ctmlemr 7167 ctssdclemn0 7169 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 1lt2pi 7400 archnqq 7477 prarloclemarch2 7479 pwle2 15489 |
Copyright terms: Public domain | W3C validator |