| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt1o | GIF version | ||
| Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| 0lt1o | ⊢ ∅ ∈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . 2 ⊢ ∅ = ∅ | |
| 2 | el1o 6536 | . 2 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
| 3 | 1, 2 | mpbir 146 | 1 ⊢ ∅ ∈ 1o |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 ∅c0 3464 1oc1o 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-nul 4178 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-un 3174 df-nul 3465 df-sn 3644 df-suc 4426 df-1o 6515 |
| This theorem is referenced by: nnaordex 6627 1domsn 6929 snexxph 7067 difinfsnlem 7216 difinfsn 7217 0ct 7224 ctmlemr 7225 ctssdclemn0 7227 exmidfodomrlemr 7326 exmidfodomrlemrALT 7327 iftrueb01 7354 1lt2pi 7473 archnqq 7550 prarloclemarch2 7552 dom1o 16067 pwle2 16076 |
| Copyright terms: Public domain | W3C validator |