ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1lt2pi Unicode version

Theorem 1lt2pi 7260
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.)
Assertion
Ref Expression
1lt2pi  |-  1o  <N  ( 1o  +N  1o )

Proof of Theorem 1lt2pi
StepHypRef Expression
1 1onn 6467 . . . . 5  |-  1o  e.  om
2 nna0 6421 . . . . 5  |-  ( 1o  e.  om  ->  ( 1o  +o  (/) )  =  1o )
31, 2ax-mp 5 . . . 4  |-  ( 1o 
+o  (/) )  =  1o
4 0lt1o 6387 . . . . 5  |-  (/)  e.  1o
5 peano1 4553 . . . . . 6  |-  (/)  e.  om
6 nnaord 6456 . . . . . 6  |-  ( (
(/)  e.  om  /\  1o  e.  om  /\  1o  e.  om )  ->  ( (/)  e.  1o  <->  ( 1o  +o  (/) )  e.  ( 1o  +o  1o ) ) )
75, 1, 1, 6mp3an 1319 . . . . 5  |-  ( (/)  e.  1o  <->  ( 1o  +o  (/) )  e.  ( 1o 
+o  1o ) )
84, 7mpbi 144 . . . 4  |-  ( 1o 
+o  (/) )  e.  ( 1o  +o  1o )
93, 8eqeltrri 2231 . . 3  |-  1o  e.  ( 1o  +o  1o )
10 1pi 7235 . . . 4  |-  1o  e.  N.
11 addpiord 7236 . . . 4  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  +N  1o )  =  ( 1o  +o  1o ) )
1210, 10, 11mp2an 423 . . 3  |-  ( 1o 
+N  1o )  =  ( 1o  +o  1o )
139, 12eleqtrri 2233 . 2  |-  1o  e.  ( 1o  +N  1o )
14 addclpi 7247 . . . 4  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  +N  1o )  e.  N. )
1510, 10, 14mp2an 423 . . 3  |-  ( 1o 
+N  1o )  e. 
N.
16 ltpiord 7239 . . 3  |-  ( ( 1o  e.  N.  /\  ( 1o  +N  1o )  e.  N. )  ->  ( 1o  <N  ( 1o  +N  1o )  <->  1o  e.  ( 1o  +N  1o ) ) )
1710, 15, 16mp2an 423 . 2  |-  ( 1o 
<N  ( 1o  +N  1o ) 
<->  1o  e.  ( 1o 
+N  1o ) )
1813, 17mpbir 145 1  |-  1o  <N  ( 1o  +N  1o )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1335    e. wcel 2128   (/)c0 3394   class class class wbr 3965   omcom 4549  (class class class)co 5824   1oc1o 6356    +o coa 6360   N.cnpi 7192    +N cpli 7193    <N clti 7195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4249  df-id 4253  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-irdg 6317  df-1o 6363  df-oadd 6367  df-ni 7224  df-pli 7225  df-lti 7227
This theorem is referenced by:  1lt2nq  7326
  Copyright terms: Public domain W3C validator