ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1lt2pi Unicode version

Theorem 1lt2pi 6996
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.)
Assertion
Ref Expression
1lt2pi  |-  1o  <N  ( 1o  +N  1o )

Proof of Theorem 1lt2pi
StepHypRef Expression
1 1onn 6319 . . . . 5  |-  1o  e.  om
2 nna0 6275 . . . . 5  |-  ( 1o  e.  om  ->  ( 1o  +o  (/) )  =  1o )
31, 2ax-mp 7 . . . 4  |-  ( 1o 
+o  (/) )  =  1o
4 0lt1o 6242 . . . . 5  |-  (/)  e.  1o
5 peano1 4437 . . . . . 6  |-  (/)  e.  om
6 nnaord 6308 . . . . . 6  |-  ( (
(/)  e.  om  /\  1o  e.  om  /\  1o  e.  om )  ->  ( (/)  e.  1o  <->  ( 1o  +o  (/) )  e.  ( 1o  +o  1o ) ) )
75, 1, 1, 6mp3an 1280 . . . . 5  |-  ( (/)  e.  1o  <->  ( 1o  +o  (/) )  e.  ( 1o 
+o  1o ) )
84, 7mpbi 144 . . . 4  |-  ( 1o 
+o  (/) )  e.  ( 1o  +o  1o )
93, 8eqeltrri 2168 . . 3  |-  1o  e.  ( 1o  +o  1o )
10 1pi 6971 . . . 4  |-  1o  e.  N.
11 addpiord 6972 . . . 4  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  +N  1o )  =  ( 1o  +o  1o ) )
1210, 10, 11mp2an 418 . . 3  |-  ( 1o 
+N  1o )  =  ( 1o  +o  1o )
139, 12eleqtrri 2170 . 2  |-  1o  e.  ( 1o  +N  1o )
14 addclpi 6983 . . . 4  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  +N  1o )  e.  N. )
1510, 10, 14mp2an 418 . . 3  |-  ( 1o 
+N  1o )  e. 
N.
16 ltpiord 6975 . . 3  |-  ( ( 1o  e.  N.  /\  ( 1o  +N  1o )  e.  N. )  ->  ( 1o  <N  ( 1o  +N  1o )  <->  1o  e.  ( 1o  +N  1o ) ) )
1710, 15, 16mp2an 418 . 2  |-  ( 1o 
<N  ( 1o  +N  1o ) 
<->  1o  e.  ( 1o 
+N  1o ) )
1813, 17mpbir 145 1  |-  1o  <N  ( 1o  +N  1o )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1296    e. wcel 1445   (/)c0 3302   class class class wbr 3867   omcom 4433  (class class class)co 5690   1oc1o 6212    +o coa 6216   N.cnpi 6928    +N cpli 6929    <N clti 6931
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-eprel 4140  df-id 4144  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-1o 6219  df-oadd 6223  df-ni 6960  df-pli 6961  df-lti 6963
This theorem is referenced by:  1lt2nq  7062
  Copyright terms: Public domain W3C validator