ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stdm Unicode version

Theorem 1stdm 6268
Description: The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
1stdm  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 1st `  A )  e. 
dom  R )

Proof of Theorem 1stdm
StepHypRef Expression
1 df-rel 4682 . . . . 5  |-  ( Rel 
R  <->  R  C_  ( _V 
X.  _V ) )
21biimpi 120 . . . 4  |-  ( Rel 
R  ->  R  C_  ( _V  X.  _V ) )
32sselda 3193 . . 3  |-  ( ( Rel  R  /\  A  e.  R )  ->  A  e.  ( _V  X.  _V ) )
4 1stval2 6241 . . 3  |-  ( A  e.  ( _V  X.  _V )  ->  ( 1st `  A )  =  |^| |^| A )
53, 4syl 14 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 1st `  A )  = 
|^| |^| A )
6 elreldm 4904 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  |^| |^| A  e.  dom  R )
75, 6eqeltrd 2282 1  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 1st `  A )  e. 
dom  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772    C_ wss 3166   |^|cint 3885    X. cxp 4673   dom cdm 4675   Rel wrel 4680   ` cfv 5271   1stc1st 6224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fv 5279  df-1st 6226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator