ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stdm Unicode version

Theorem 1stdm 6237
Description: The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
1stdm  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 1st `  A )  e. 
dom  R )

Proof of Theorem 1stdm
StepHypRef Expression
1 df-rel 4667 . . . . 5  |-  ( Rel 
R  <->  R  C_  ( _V 
X.  _V ) )
21biimpi 120 . . . 4  |-  ( Rel 
R  ->  R  C_  ( _V  X.  _V ) )
32sselda 3180 . . 3  |-  ( ( Rel  R  /\  A  e.  R )  ->  A  e.  ( _V  X.  _V ) )
4 1stval2 6210 . . 3  |-  ( A  e.  ( _V  X.  _V )  ->  ( 1st `  A )  =  |^| |^| A )
53, 4syl 14 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 1st `  A )  = 
|^| |^| A )
6 elreldm 4889 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  |^| |^| A  e.  dom  R )
75, 6eqeltrd 2270 1  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 1st `  A )  e. 
dom  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3154   |^|cint 3871    X. cxp 4658   dom cdm 4660   Rel wrel 4665   ` cfv 5255   1stc1st 6193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fv 5263  df-1st 6195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator