ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stdm Unicode version

Theorem 1stdm 6088
Description: The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
1stdm  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 1st `  A )  e. 
dom  R )

Proof of Theorem 1stdm
StepHypRef Expression
1 df-rel 4554 . . . . 5  |-  ( Rel 
R  <->  R  C_  ( _V 
X.  _V ) )
21biimpi 119 . . . 4  |-  ( Rel 
R  ->  R  C_  ( _V  X.  _V ) )
32sselda 3102 . . 3  |-  ( ( Rel  R  /\  A  e.  R )  ->  A  e.  ( _V  X.  _V ) )
4 1stval2 6061 . . 3  |-  ( A  e.  ( _V  X.  _V )  ->  ( 1st `  A )  =  |^| |^| A )
53, 4syl 14 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 1st `  A )  = 
|^| |^| A )
6 elreldm 4773 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  |^| |^| A  e.  dom  R )
75, 6eqeltrd 2217 1  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 1st `  A )  e. 
dom  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   _Vcvv 2689    C_ wss 3076   |^|cint 3779    X. cxp 4545   dom cdm 4547   Rel wrel 4552   ` cfv 5131   1stc1st 6044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fv 5139  df-1st 6046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator