ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stdm Unicode version

Theorem 1stdm 6124
Description: The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
1stdm  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 1st `  A )  e. 
dom  R )

Proof of Theorem 1stdm
StepHypRef Expression
1 df-rel 4590 . . . . 5  |-  ( Rel 
R  <->  R  C_  ( _V 
X.  _V ) )
21biimpi 119 . . . 4  |-  ( Rel 
R  ->  R  C_  ( _V  X.  _V ) )
32sselda 3128 . . 3  |-  ( ( Rel  R  /\  A  e.  R )  ->  A  e.  ( _V  X.  _V ) )
4 1stval2 6097 . . 3  |-  ( A  e.  ( _V  X.  _V )  ->  ( 1st `  A )  =  |^| |^| A )
53, 4syl 14 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 1st `  A )  = 
|^| |^| A )
6 elreldm 4809 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  |^| |^| A  e.  dom  R )
75, 6eqeltrd 2234 1  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 1st `  A )  e. 
dom  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   _Vcvv 2712    C_ wss 3102   |^|cint 3807    X. cxp 4581   dom cdm 4583   Rel wrel 4588   ` cfv 5167   1stc1st 6080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-iota 5132  df-fun 5169  df-fv 5175  df-1st 6082
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator