ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stval2 Unicode version

Theorem 1stval2 6007
Description: Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
Assertion
Ref Expression
1stval2  |-  ( A  e.  ( _V  X.  _V )  ->  ( 1st `  A )  =  |^| |^| A )

Proof of Theorem 1stval2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 4561 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
2 vex 2660 . . . . . 6  |-  x  e. 
_V
3 vex 2660 . . . . . 6  |-  y  e. 
_V
42, 3op1st 5998 . . . . 5  |-  ( 1st `  <. x ,  y
>. )  =  x
52, 3op1stb 4359 . . . . 5  |-  |^| |^| <. x ,  y >.  =  x
64, 5eqtr4i 2138 . . . 4  |-  ( 1st `  <. x ,  y
>. )  =  |^| |^|
<. x ,  y >.
7 fveq2 5375 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( 1st `  A
)  =  ( 1st `  <. x ,  y
>. ) )
8 inteq 3740 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  |^| A  =  |^| <.
x ,  y >.
)
98inteqd 3742 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  |^| |^| A  =  |^| |^|
<. x ,  y >.
)
106, 7, 93eqtr4a 2173 . . 3  |-  ( A  =  <. x ,  y
>.  ->  ( 1st `  A
)  =  |^| |^| A
)
1110exlimivv 1850 . 2  |-  ( E. x E. y  A  =  <. x ,  y
>.  ->  ( 1st `  A
)  =  |^| |^| A
)
121, 11sylbi 120 1  |-  ( A  e.  ( _V  X.  _V )  ->  ( 1st `  A )  =  |^| |^| A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1314   E.wex 1451    e. wcel 1463   _Vcvv 2657   <.cop 3496   |^|cint 3737    X. cxp 4497   ` cfv 5081   1stc1st 5990
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-sbc 2879  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-iota 5046  df-fun 5083  df-fv 5089  df-1st 5992
This theorem is referenced by:  1stdm  6034
  Copyright terms: Public domain W3C validator