ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stval2 Unicode version

Theorem 1stval2 6301
Description: Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
Assertion
Ref Expression
1stval2  |-  ( A  e.  ( _V  X.  _V )  ->  ( 1st `  A )  =  |^| |^| A )

Proof of Theorem 1stval2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 4781 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
2 vex 2802 . . . . . 6  |-  x  e. 
_V
3 vex 2802 . . . . . 6  |-  y  e. 
_V
42, 3op1st 6292 . . . . 5  |-  ( 1st `  <. x ,  y
>. )  =  x
52, 3op1stb 4569 . . . . 5  |-  |^| |^| <. x ,  y >.  =  x
64, 5eqtr4i 2253 . . . 4  |-  ( 1st `  <. x ,  y
>. )  =  |^| |^|
<. x ,  y >.
7 fveq2 5627 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( 1st `  A
)  =  ( 1st `  <. x ,  y
>. ) )
8 inteq 3926 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  |^| A  =  |^| <.
x ,  y >.
)
98inteqd 3928 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  |^| |^| A  =  |^| |^|
<. x ,  y >.
)
106, 7, 93eqtr4a 2288 . . 3  |-  ( A  =  <. x ,  y
>.  ->  ( 1st `  A
)  =  |^| |^| A
)
1110exlimivv 1943 . 2  |-  ( E. x E. y  A  =  <. x ,  y
>.  ->  ( 1st `  A
)  =  |^| |^| A
)
121, 11sylbi 121 1  |-  ( A  e.  ( _V  X.  _V )  ->  ( 1st `  A )  =  |^| |^| A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799   <.cop 3669   |^|cint 3923    X. cxp 4717   ` cfv 5318   1stc1st 6284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fv 5326  df-1st 6286
This theorem is referenced by:  1stdm  6328
  Copyright terms: Public domain W3C validator