ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stval2 Unicode version

Theorem 1stval2 6241
Description: Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
Assertion
Ref Expression
1stval2  |-  ( A  e.  ( _V  X.  _V )  ->  ( 1st `  A )  =  |^| |^| A )

Proof of Theorem 1stval2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 4737 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
2 vex 2775 . . . . . 6  |-  x  e. 
_V
3 vex 2775 . . . . . 6  |-  y  e. 
_V
42, 3op1st 6232 . . . . 5  |-  ( 1st `  <. x ,  y
>. )  =  x
52, 3op1stb 4525 . . . . 5  |-  |^| |^| <. x ,  y >.  =  x
64, 5eqtr4i 2229 . . . 4  |-  ( 1st `  <. x ,  y
>. )  =  |^| |^|
<. x ,  y >.
7 fveq2 5576 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( 1st `  A
)  =  ( 1st `  <. x ,  y
>. ) )
8 inteq 3888 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  |^| A  =  |^| <.
x ,  y >.
)
98inteqd 3890 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  |^| |^| A  =  |^| |^|
<. x ,  y >.
)
106, 7, 93eqtr4a 2264 . . 3  |-  ( A  =  <. x ,  y
>.  ->  ( 1st `  A
)  =  |^| |^| A
)
1110exlimivv 1920 . 2  |-  ( E. x E. y  A  =  <. x ,  y
>.  ->  ( 1st `  A
)  =  |^| |^| A
)
121, 11sylbi 121 1  |-  ( A  e.  ( _V  X.  _V )  ->  ( 1st `  A )  =  |^| |^| A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772   <.cop 3636   |^|cint 3885    X. cxp 4673   ` cfv 5271   1stc1st 6224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fv 5279  df-1st 6226
This theorem is referenced by:  1stdm  6268
  Copyright terms: Public domain W3C validator