ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stdm GIF version

Theorem 1stdm 6280
Description: The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
1stdm ((Rel 𝑅𝐴𝑅) → (1st𝐴) ∈ dom 𝑅)

Proof of Theorem 1stdm
StepHypRef Expression
1 df-rel 4689 . . . . 5 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 120 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
32sselda 3197 . . 3 ((Rel 𝑅𝐴𝑅) → 𝐴 ∈ (V × V))
4 1stval2 6253 . . 3 (𝐴 ∈ (V × V) → (1st𝐴) = 𝐴)
53, 4syl 14 . 2 ((Rel 𝑅𝐴𝑅) → (1st𝐴) = 𝐴)
6 elreldm 4912 . 2 ((Rel 𝑅𝐴𝑅) → 𝐴 ∈ dom 𝑅)
75, 6eqeltrd 2283 1 ((Rel 𝑅𝐴𝑅) → (1st𝐴) ∈ dom 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  wss 3170   cint 3890   × cxp 4680  dom cdm 4682  Rel wrel 4687  cfv 5279  1st c1st 6236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-iota 5240  df-fun 5281  df-fv 5287  df-1st 6238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator