ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stdm GIF version

Theorem 1stdm 6150
Description: The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
1stdm ((Rel 𝑅𝐴𝑅) → (1st𝐴) ∈ dom 𝑅)

Proof of Theorem 1stdm
StepHypRef Expression
1 df-rel 4611 . . . . 5 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 119 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
32sselda 3142 . . 3 ((Rel 𝑅𝐴𝑅) → 𝐴 ∈ (V × V))
4 1stval2 6123 . . 3 (𝐴 ∈ (V × V) → (1st𝐴) = 𝐴)
53, 4syl 14 . 2 ((Rel 𝑅𝐴𝑅) → (1st𝐴) = 𝐴)
6 elreldm 4830 . 2 ((Rel 𝑅𝐴𝑅) → 𝐴 ∈ dom 𝑅)
75, 6eqeltrd 2243 1 ((Rel 𝑅𝐴𝑅) → (1st𝐴) ∈ dom 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  wss 3116   cint 3824   × cxp 4602  dom cdm 4604  Rel wrel 4609  cfv 5188  1st c1st 6106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-1st 6108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator