ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stdm GIF version

Theorem 1stdm 6326
Description: The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
1stdm ((Rel 𝑅𝐴𝑅) → (1st𝐴) ∈ dom 𝑅)

Proof of Theorem 1stdm
StepHypRef Expression
1 df-rel 4725 . . . . 5 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 120 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
32sselda 3224 . . 3 ((Rel 𝑅𝐴𝑅) → 𝐴 ∈ (V × V))
4 1stval2 6299 . . 3 (𝐴 ∈ (V × V) → (1st𝐴) = 𝐴)
53, 4syl 14 . 2 ((Rel 𝑅𝐴𝑅) → (1st𝐴) = 𝐴)
6 elreldm 4949 . 2 ((Rel 𝑅𝐴𝑅) → 𝐴 ∈ dom 𝑅)
75, 6eqeltrd 2306 1 ((Rel 𝑅𝐴𝑅) → (1st𝐴) ∈ dom 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197   cint 3922   × cxp 4716  dom cdm 4718  Rel wrel 4723  cfv 5317  1st c1st 6282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fv 5325  df-1st 6284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator