ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2idlmex Unicode version

Theorem 2idlmex 14465
Description: Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
Hypothesis
Ref Expression
2idlmex.i  |-  T  =  (2Ideal `  W )
Assertion
Ref Expression
2idlmex  |-  ( U  e.  T  ->  W  e.  _V )

Proof of Theorem 2idlmex
StepHypRef Expression
1 mptrel 4850 . . . 4  |-  Rel  (
r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
2 df-2idl 14464 . . . . 5  |- 2Ideal  =  ( r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
32releqi 4802 . . . 4  |-  ( Rel 2Ideal  <->  Rel  ( r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) ) )
41, 3mpbir 146 . . 3  |-  Rel 2Ideal
5 2idlmex.i . . . . 5  |-  T  =  (2Ideal `  W )
65eleq2i 2296 . . . 4  |-  ( U  e.  T  <->  U  e.  (2Ideal `  W ) )
76biimpi 120 . . 3  |-  ( U  e.  T  ->  U  e.  (2Ideal `  W )
)
8 relelfvdm 5659 . . 3  |-  ( ( Rel 2Ideal  /\  U  e.  (2Ideal `  W ) )  ->  W  e.  dom 2Ideal )
94, 7, 8sylancr 414 . 2  |-  ( U  e.  T  ->  W  e.  dom 2Ideal )
109elexd 2813 1  |-  ( U  e.  T  ->  W  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    i^i cin 3196    |-> cmpt 4145   dom cdm 4719   Rel wrel 4724   ` cfv 5318  opprcoppr 14030  LIdealclidl 14431  2Idealc2idl 14463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-xp 4725  df-rel 4726  df-dm 4729  df-iota 5278  df-fv 5326  df-2idl 14464
This theorem is referenced by:  2idlval  14466  2idlelb  14469  2idllidld  14470  2idlridld  14471  2idlbas  14479
  Copyright terms: Public domain W3C validator