ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2idlmex Unicode version

Theorem 2idlmex 14378
Description: Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
Hypothesis
Ref Expression
2idlmex.i  |-  T  =  (2Ideal `  W )
Assertion
Ref Expression
2idlmex  |-  ( U  e.  T  ->  W  e.  _V )

Proof of Theorem 2idlmex
StepHypRef Expression
1 mptrel 4824 . . . 4  |-  Rel  (
r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
2 df-2idl 14377 . . . . 5  |- 2Ideal  =  ( r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
32releqi 4776 . . . 4  |-  ( Rel 2Ideal  <->  Rel  ( r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) ) )
41, 3mpbir 146 . . 3  |-  Rel 2Ideal
5 2idlmex.i . . . . 5  |-  T  =  (2Ideal `  W )
65eleq2i 2274 . . . 4  |-  ( U  e.  T  <->  U  e.  (2Ideal `  W ) )
76biimpi 120 . . 3  |-  ( U  e.  T  ->  U  e.  (2Ideal `  W )
)
8 relelfvdm 5631 . . 3  |-  ( ( Rel 2Ideal  /\  U  e.  (2Ideal `  W ) )  ->  W  e.  dom 2Ideal )
94, 7, 8sylancr 414 . 2  |-  ( U  e.  T  ->  W  e.  dom 2Ideal )
109elexd 2790 1  |-  ( U  e.  T  ->  W  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776    i^i cin 3173    |-> cmpt 4121   dom cdm 4693   Rel wrel 4698   ` cfv 5290  opprcoppr 13944  LIdealclidl 14344  2Idealc2idl 14376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-xp 4699  df-rel 4700  df-dm 4703  df-iota 5251  df-fv 5298  df-2idl 14377
This theorem is referenced by:  2idlval  14379  2idlelb  14382  2idllidld  14383  2idlridld  14384  2idlbas  14392
  Copyright terms: Public domain W3C validator