ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2idlmex Unicode version

Theorem 2idlmex 14263
Description: Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
Hypothesis
Ref Expression
2idlmex.i  |-  T  =  (2Ideal `  W )
Assertion
Ref Expression
2idlmex  |-  ( U  e.  T  ->  W  e.  _V )

Proof of Theorem 2idlmex
StepHypRef Expression
1 mptrel 4806 . . . 4  |-  Rel  (
r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
2 df-2idl 14262 . . . . 5  |- 2Ideal  =  ( r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
32releqi 4758 . . . 4  |-  ( Rel 2Ideal  <->  Rel  ( r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) ) )
41, 3mpbir 146 . . 3  |-  Rel 2Ideal
5 2idlmex.i . . . . 5  |-  T  =  (2Ideal `  W )
65eleq2i 2272 . . . 4  |-  ( U  e.  T  <->  U  e.  (2Ideal `  W ) )
76biimpi 120 . . 3  |-  ( U  e.  T  ->  U  e.  (2Ideal `  W )
)
8 relelfvdm 5608 . . 3  |-  ( ( Rel 2Ideal  /\  U  e.  (2Ideal `  W ) )  ->  W  e.  dom 2Ideal )
94, 7, 8sylancr 414 . 2  |-  ( U  e.  T  ->  W  e.  dom 2Ideal )
109elexd 2785 1  |-  ( U  e.  T  ->  W  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    i^i cin 3165    |-> cmpt 4105   dom cdm 4675   Rel wrel 4680   ` cfv 5271  opprcoppr 13829  LIdealclidl 14229  2Idealc2idl 14261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-xp 4681  df-rel 4682  df-dm 4685  df-iota 5232  df-fv 5279  df-2idl 14262
This theorem is referenced by:  2idlval  14264  2idlelb  14267  2idllidld  14268  2idlridld  14269  2idlbas  14277
  Copyright terms: Public domain W3C validator