| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2idlmex | Unicode version | ||
| Description: Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| 2idlmex.i |
|
| Ref | Expression |
|---|---|
| 2idlmex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrel 4806 |
. . . 4
| |
| 2 | df-2idl 14262 |
. . . . 5
| |
| 3 | 2 | releqi 4758 |
. . . 4
|
| 4 | 1, 3 | mpbir 146 |
. . 3
|
| 5 | 2idlmex.i |
. . . . 5
| |
| 6 | 5 | eleq2i 2272 |
. . . 4
|
| 7 | 6 | biimpi 120 |
. . 3
|
| 8 | relelfvdm 5608 |
. . 3
| |
| 9 | 4, 7, 8 | sylancr 414 |
. 2
|
| 10 | 9 | elexd 2785 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-xp 4681 df-rel 4682 df-dm 4685 df-iota 5232 df-fv 5279 df-2idl 14262 |
| This theorem is referenced by: 2idlval 14264 2idlelb 14267 2idllidld 14268 2idlridld 14269 2idlbas 14277 |
| Copyright terms: Public domain | W3C validator |