ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2idlmex Unicode version

Theorem 2idlmex 13997
Description: Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
Hypothesis
Ref Expression
2idlmex.i  |-  T  =  (2Ideal `  W )
Assertion
Ref Expression
2idlmex  |-  ( U  e.  T  ->  W  e.  _V )

Proof of Theorem 2idlmex
StepHypRef Expression
1 mptrel 4790 . . . 4  |-  Rel  (
r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
2 df-2idl 13996 . . . . 5  |- 2Ideal  =  ( r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
32releqi 4742 . . . 4  |-  ( Rel 2Ideal  <->  Rel  ( r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) ) )
41, 3mpbir 146 . . 3  |-  Rel 2Ideal
5 2idlmex.i . . . . 5  |-  T  =  (2Ideal `  W )
65eleq2i 2260 . . . 4  |-  ( U  e.  T  <->  U  e.  (2Ideal `  W ) )
76biimpi 120 . . 3  |-  ( U  e.  T  ->  U  e.  (2Ideal `  W )
)
8 relelfvdm 5586 . . 3  |-  ( ( Rel 2Ideal  /\  U  e.  (2Ideal `  W ) )  ->  W  e.  dom 2Ideal )
94, 7, 8sylancr 414 . 2  |-  ( U  e.  T  ->  W  e.  dom 2Ideal )
109elexd 2773 1  |-  ( U  e.  T  ->  W  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760    i^i cin 3152    |-> cmpt 4090   dom cdm 4659   Rel wrel 4664   ` cfv 5254  opprcoppr 13563  LIdealclidl 13963  2Idealc2idl 13995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-xp 4665  df-rel 4666  df-dm 4669  df-iota 5215  df-fv 5262  df-2idl 13996
This theorem is referenced by:  2idlval  13998  2idlelb  14001  2idllidld  14002  2idlridld  14003  2idlbas  14011
  Copyright terms: Public domain W3C validator