| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2idlmex | GIF version | ||
| Description: Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| 2idlmex.i | ⊢ 𝑇 = (2Ideal‘𝑊) |
| Ref | Expression |
|---|---|
| 2idlmex | ⊢ (𝑈 ∈ 𝑇 → 𝑊 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrel 4849 | . . . 4 ⊢ Rel (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
| 2 | df-2idl 14458 | . . . . 5 ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
| 3 | 2 | releqi 4801 | . . . 4 ⊢ (Rel 2Ideal ↔ Rel (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟))))) |
| 4 | 1, 3 | mpbir 146 | . . 3 ⊢ Rel 2Ideal |
| 5 | 2idlmex.i | . . . . 5 ⊢ 𝑇 = (2Ideal‘𝑊) | |
| 6 | 5 | eleq2i 2296 | . . . 4 ⊢ (𝑈 ∈ 𝑇 ↔ 𝑈 ∈ (2Ideal‘𝑊)) |
| 7 | 6 | biimpi 120 | . . 3 ⊢ (𝑈 ∈ 𝑇 → 𝑈 ∈ (2Ideal‘𝑊)) |
| 8 | relelfvdm 5658 | . . 3 ⊢ ((Rel 2Ideal ∧ 𝑈 ∈ (2Ideal‘𝑊)) → 𝑊 ∈ dom 2Ideal) | |
| 9 | 4, 7, 8 | sylancr 414 | . 2 ⊢ (𝑈 ∈ 𝑇 → 𝑊 ∈ dom 2Ideal) |
| 10 | 9 | elexd 2813 | 1 ⊢ (𝑈 ∈ 𝑇 → 𝑊 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∩ cin 3196 ↦ cmpt 4144 dom cdm 4718 Rel wrel 4723 ‘cfv 5317 opprcoppr 14025 LIdealclidl 14425 2Idealc2idl 14457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-xp 4724 df-rel 4725 df-dm 4728 df-iota 5277 df-fv 5325 df-2idl 14458 |
| This theorem is referenced by: 2idlval 14460 2idlelb 14463 2idllidld 14464 2idlridld 14465 2idlbas 14473 |
| Copyright terms: Public domain | W3C validator |