| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2idlmex | GIF version | ||
| Description: Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| 2idlmex.i | ⊢ 𝑇 = (2Ideal‘𝑊) |
| Ref | Expression |
|---|---|
| 2idlmex | ⊢ (𝑈 ∈ 𝑇 → 𝑊 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrel 4814 | . . . 4 ⊢ Rel (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
| 2 | df-2idl 14337 | . . . . 5 ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
| 3 | 2 | releqi 4766 | . . . 4 ⊢ (Rel 2Ideal ↔ Rel (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟))))) |
| 4 | 1, 3 | mpbir 146 | . . 3 ⊢ Rel 2Ideal |
| 5 | 2idlmex.i | . . . . 5 ⊢ 𝑇 = (2Ideal‘𝑊) | |
| 6 | 5 | eleq2i 2273 | . . . 4 ⊢ (𝑈 ∈ 𝑇 ↔ 𝑈 ∈ (2Ideal‘𝑊)) |
| 7 | 6 | biimpi 120 | . . 3 ⊢ (𝑈 ∈ 𝑇 → 𝑈 ∈ (2Ideal‘𝑊)) |
| 8 | relelfvdm 5621 | . . 3 ⊢ ((Rel 2Ideal ∧ 𝑈 ∈ (2Ideal‘𝑊)) → 𝑊 ∈ dom 2Ideal) | |
| 9 | 4, 7, 8 | sylancr 414 | . 2 ⊢ (𝑈 ∈ 𝑇 → 𝑊 ∈ dom 2Ideal) |
| 10 | 9 | elexd 2787 | 1 ⊢ (𝑈 ∈ 𝑇 → 𝑊 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∩ cin 3169 ↦ cmpt 4113 dom cdm 4683 Rel wrel 4688 ‘cfv 5280 opprcoppr 13904 LIdealclidl 14304 2Idealc2idl 14336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-xp 4689 df-rel 4690 df-dm 4693 df-iota 5241 df-fv 5288 df-2idl 14337 |
| This theorem is referenced by: 2idlval 14339 2idlelb 14342 2idllidld 14343 2idlridld 14344 2idlbas 14352 |
| Copyright terms: Public domain | W3C validator |