| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2idlmex | GIF version | ||
| Description: Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| 2idlmex.i | ⊢ 𝑇 = (2Ideal‘𝑊) |
| Ref | Expression |
|---|---|
| 2idlmex | ⊢ (𝑈 ∈ 𝑇 → 𝑊 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrel 4804 | . . . 4 ⊢ Rel (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
| 2 | df-2idl 14180 | . . . . 5 ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
| 3 | 2 | releqi 4756 | . . . 4 ⊢ (Rel 2Ideal ↔ Rel (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟))))) |
| 4 | 1, 3 | mpbir 146 | . . 3 ⊢ Rel 2Ideal |
| 5 | 2idlmex.i | . . . . 5 ⊢ 𝑇 = (2Ideal‘𝑊) | |
| 6 | 5 | eleq2i 2271 | . . . 4 ⊢ (𝑈 ∈ 𝑇 ↔ 𝑈 ∈ (2Ideal‘𝑊)) |
| 7 | 6 | biimpi 120 | . . 3 ⊢ (𝑈 ∈ 𝑇 → 𝑈 ∈ (2Ideal‘𝑊)) |
| 8 | relelfvdm 5602 | . . 3 ⊢ ((Rel 2Ideal ∧ 𝑈 ∈ (2Ideal‘𝑊)) → 𝑊 ∈ dom 2Ideal) | |
| 9 | 4, 7, 8 | sylancr 414 | . 2 ⊢ (𝑈 ∈ 𝑇 → 𝑊 ∈ dom 2Ideal) |
| 10 | 9 | elexd 2784 | 1 ⊢ (𝑈 ∈ 𝑇 → 𝑊 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ∩ cin 3164 ↦ cmpt 4104 dom cdm 4673 Rel wrel 4678 ‘cfv 5268 opprcoppr 13747 LIdealclidl 14147 2Idealc2idl 14179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-xp 4679 df-rel 4680 df-dm 4683 df-iota 5229 df-fv 5276 df-2idl 14180 |
| This theorem is referenced by: 2idlval 14182 2idlelb 14185 2idllidld 14186 2idlridld 14187 2idlbas 14195 |
| Copyright terms: Public domain | W3C validator |