ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2idlmex GIF version

Theorem 2idlmex 14181
Description: Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
Hypothesis
Ref Expression
2idlmex.i 𝑇 = (2Ideal‘𝑊)
Assertion
Ref Expression
2idlmex (𝑈𝑇𝑊 ∈ V)

Proof of Theorem 2idlmex
StepHypRef Expression
1 mptrel 4804 . . . 4 Rel (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))))
2 df-2idl 14180 . . . . 5 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))))
32releqi 4756 . . . 4 (Rel 2Ideal ↔ Rel (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟)))))
41, 3mpbir 146 . . 3 Rel 2Ideal
5 2idlmex.i . . . . 5 𝑇 = (2Ideal‘𝑊)
65eleq2i 2271 . . . 4 (𝑈𝑇𝑈 ∈ (2Ideal‘𝑊))
76biimpi 120 . . 3 (𝑈𝑇𝑈 ∈ (2Ideal‘𝑊))
8 relelfvdm 5602 . . 3 ((Rel 2Ideal ∧ 𝑈 ∈ (2Ideal‘𝑊)) → 𝑊 ∈ dom 2Ideal)
94, 7, 8sylancr 414 . 2 (𝑈𝑇𝑊 ∈ dom 2Ideal)
109elexd 2784 1 (𝑈𝑇𝑊 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  Vcvv 2771  cin 3164  cmpt 4104  dom cdm 4673  Rel wrel 4678  cfv 5268  opprcoppr 13747  LIdealclidl 14147  2Idealc2idl 14179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-xp 4679  df-rel 4680  df-dm 4683  df-iota 5229  df-fv 5276  df-2idl 14180
This theorem is referenced by:  2idlval  14182  2idlelb  14185  2idllidld  14186  2idlridld  14187  2idlbas  14195
  Copyright terms: Public domain W3C validator