ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2idlmex GIF version

Theorem 2idlmex 14459
Description: Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
Hypothesis
Ref Expression
2idlmex.i 𝑇 = (2Ideal‘𝑊)
Assertion
Ref Expression
2idlmex (𝑈𝑇𝑊 ∈ V)

Proof of Theorem 2idlmex
StepHypRef Expression
1 mptrel 4849 . . . 4 Rel (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))))
2 df-2idl 14458 . . . . 5 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))))
32releqi 4801 . . . 4 (Rel 2Ideal ↔ Rel (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟)))))
41, 3mpbir 146 . . 3 Rel 2Ideal
5 2idlmex.i . . . . 5 𝑇 = (2Ideal‘𝑊)
65eleq2i 2296 . . . 4 (𝑈𝑇𝑈 ∈ (2Ideal‘𝑊))
76biimpi 120 . . 3 (𝑈𝑇𝑈 ∈ (2Ideal‘𝑊))
8 relelfvdm 5658 . . 3 ((Rel 2Ideal ∧ 𝑈 ∈ (2Ideal‘𝑊)) → 𝑊 ∈ dom 2Ideal)
94, 7, 8sylancr 414 . 2 (𝑈𝑇𝑊 ∈ dom 2Ideal)
109elexd 2813 1 (𝑈𝑇𝑊 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196  cmpt 4144  dom cdm 4718  Rel wrel 4723  cfv 5317  opprcoppr 14025  LIdealclidl 14425  2Idealc2idl 14457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-xp 4724  df-rel 4725  df-dm 4728  df-iota 5277  df-fv 5325  df-2idl 14458
This theorem is referenced by:  2idlval  14460  2idlelb  14463  2idllidld  14464  2idlridld  14465  2idlbas  14473
  Copyright terms: Public domain W3C validator