| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2idlmex | GIF version | ||
| Description: Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| 2idlmex.i | ⊢ 𝑇 = (2Ideal‘𝑊) |
| Ref | Expression |
|---|---|
| 2idlmex | ⊢ (𝑈 ∈ 𝑇 → 𝑊 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrel 4819 | . . . 4 ⊢ Rel (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
| 2 | df-2idl 14347 | . . . . 5 ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
| 3 | 2 | releqi 4771 | . . . 4 ⊢ (Rel 2Ideal ↔ Rel (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟))))) |
| 4 | 1, 3 | mpbir 146 | . . 3 ⊢ Rel 2Ideal |
| 5 | 2idlmex.i | . . . . 5 ⊢ 𝑇 = (2Ideal‘𝑊) | |
| 6 | 5 | eleq2i 2273 | . . . 4 ⊢ (𝑈 ∈ 𝑇 ↔ 𝑈 ∈ (2Ideal‘𝑊)) |
| 7 | 6 | biimpi 120 | . . 3 ⊢ (𝑈 ∈ 𝑇 → 𝑈 ∈ (2Ideal‘𝑊)) |
| 8 | relelfvdm 5626 | . . 3 ⊢ ((Rel 2Ideal ∧ 𝑈 ∈ (2Ideal‘𝑊)) → 𝑊 ∈ dom 2Ideal) | |
| 9 | 4, 7, 8 | sylancr 414 | . 2 ⊢ (𝑈 ∈ 𝑇 → 𝑊 ∈ dom 2Ideal) |
| 10 | 9 | elexd 2787 | 1 ⊢ (𝑈 ∈ 𝑇 → 𝑊 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∩ cin 3169 ↦ cmpt 4116 dom cdm 4688 Rel wrel 4693 ‘cfv 5285 opprcoppr 13914 LIdealclidl 14314 2Idealc2idl 14346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-mpt 4118 df-xp 4694 df-rel 4695 df-dm 4698 df-iota 5246 df-fv 5293 df-2idl 14347 |
| This theorem is referenced by: 2idlval 14349 2idlelb 14352 2idllidld 14353 2idlridld 14354 2idlbas 14362 |
| Copyright terms: Public domain | W3C validator |