| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2idlmex | GIF version | ||
| Description: Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| 2idlmex.i | ⊢ 𝑇 = (2Ideal‘𝑊) |
| Ref | Expression |
|---|---|
| 2idlmex | ⊢ (𝑈 ∈ 𝑇 → 𝑊 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrel 4794 | . . . 4 ⊢ Rel (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
| 2 | df-2idl 14056 | . . . . 5 ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
| 3 | 2 | releqi 4746 | . . . 4 ⊢ (Rel 2Ideal ↔ Rel (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟))))) |
| 4 | 1, 3 | mpbir 146 | . . 3 ⊢ Rel 2Ideal |
| 5 | 2idlmex.i | . . . . 5 ⊢ 𝑇 = (2Ideal‘𝑊) | |
| 6 | 5 | eleq2i 2263 | . . . 4 ⊢ (𝑈 ∈ 𝑇 ↔ 𝑈 ∈ (2Ideal‘𝑊)) |
| 7 | 6 | biimpi 120 | . . 3 ⊢ (𝑈 ∈ 𝑇 → 𝑈 ∈ (2Ideal‘𝑊)) |
| 8 | relelfvdm 5590 | . . 3 ⊢ ((Rel 2Ideal ∧ 𝑈 ∈ (2Ideal‘𝑊)) → 𝑊 ∈ dom 2Ideal) | |
| 9 | 4, 7, 8 | sylancr 414 | . 2 ⊢ (𝑈 ∈ 𝑇 → 𝑊 ∈ dom 2Ideal) |
| 10 | 9 | elexd 2776 | 1 ⊢ (𝑈 ∈ 𝑇 → 𝑊 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∩ cin 3156 ↦ cmpt 4094 dom cdm 4663 Rel wrel 4668 ‘cfv 5258 opprcoppr 13623 LIdealclidl 14023 2Idealc2idl 14055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-xp 4669 df-rel 4670 df-dm 4673 df-iota 5219 df-fv 5266 df-2idl 14056 |
| This theorem is referenced by: 2idlval 14058 2idlelb 14061 2idllidld 14062 2idlridld 14063 2idlbas 14071 |
| Copyright terms: Public domain | W3C validator |