ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2idlelb Unicode version

Theorem 2idlelb 14454
Description: Membership in a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.)
Hypotheses
Ref Expression
2idlel.i  |-  I  =  (LIdeal `  R )
2idlel.o  |-  O  =  (oppr
`  R )
2idlel.j  |-  J  =  (LIdeal `  O )
2idlel.t  |-  T  =  (2Ideal `  R )
Assertion
Ref Expression
2idlelb  |-  ( U  e.  T  <->  ( U  e.  I  /\  U  e.  J ) )

Proof of Theorem 2idlelb
StepHypRef Expression
1 2idlel.t . . 3  |-  T  =  (2Ideal `  R )
212idlmex 14450 . 2  |-  ( U  e.  T  ->  R  e.  _V )
3 2idlel.i . . . 4  |-  I  =  (LIdeal `  R )
43lidlmex 14424 . . 3  |-  ( U  e.  I  ->  R  e.  _V )
54adantr 276 . 2  |-  ( ( U  e.  I  /\  U  e.  J )  ->  R  e.  _V )
6 2idlel.o . . . . 5  |-  O  =  (oppr
`  R )
7 2idlel.j . . . . 5  |-  J  =  (LIdeal `  O )
83, 6, 7, 12idlvalg 14452 . . . 4  |-  ( R  e.  _V  ->  T  =  ( I  i^i 
J ) )
98eleq2d 2299 . . 3  |-  ( R  e.  _V  ->  ( U  e.  T  <->  U  e.  ( I  i^i  J ) ) )
10 elin 3387 . . 3  |-  ( U  e.  ( I  i^i 
J )  <->  ( U  e.  I  /\  U  e.  J ) )
119, 10bitrdi 196 . 2  |-  ( R  e.  _V  ->  ( U  e.  T  <->  ( U  e.  I  /\  U  e.  J ) ) )
122, 5, 11pm5.21nii 709 1  |-  ( U  e.  T  <->  ( U  e.  I  /\  U  e.  J ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799    i^i cin 3196   ` cfv 5314  opprcoppr 14016  LIdealclidl 14416  2Idealc2idl 14448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026  df-mulr 13110  df-sca 13112  df-vsca 13113  df-ip 13114  df-lssm 14302  df-sra 14384  df-rgmod 14385  df-lidl 14418  df-2idl 14449
This theorem is referenced by:  df2idl2rng  14457  2idlelbas  14465  rng2idlsubgsubrng  14469  2idlcpblrng  14472  2idlcpbl  14473  qusrhm  14477
  Copyright terms: Public domain W3C validator