| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2idlval | Unicode version | ||
| Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| 2idlval.i |
|
| 2idlval.o |
|
| 2idlval.j |
|
| 2idlval.t |
|
| Ref | Expression |
|---|---|
| 2idlval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idlval.t |
. . . 4
| |
| 2 | 1 | 2idlmex 14338 |
. . 3
|
| 3 | elinel1 3363 |
. . . 4
| |
| 4 | 2idlval.i |
. . . . 5
| |
| 5 | 4 | lidlmex 14312 |
. . . 4
|
| 6 | 3, 5 | syl 14 |
. . 3
|
| 7 | lidlex 14310 |
. . . . . . . 8
| |
| 8 | 4, 7 | eqeltrid 2293 |
. . . . . . 7
|
| 9 | inex1g 4188 |
. . . . . . 7
| |
| 10 | 8, 9 | syl 14 |
. . . . . 6
|
| 11 | fveq2 5589 |
. . . . . . . . 9
| |
| 12 | 11, 4 | eqtr4di 2257 |
. . . . . . . 8
|
| 13 | fveq2 5589 |
. . . . . . . . . . 11
| |
| 14 | 2idlval.o |
. . . . . . . . . . 11
| |
| 15 | 13, 14 | eqtr4di 2257 |
. . . . . . . . . 10
|
| 16 | 15 | fveq2d 5593 |
. . . . . . . . 9
|
| 17 | 2idlval.j |
. . . . . . . . 9
| |
| 18 | 16, 17 | eqtr4di 2257 |
. . . . . . . 8
|
| 19 | 12, 18 | ineq12d 3379 |
. . . . . . 7
|
| 20 | df-2idl 14337 |
. . . . . . 7
| |
| 21 | 19, 20 | fvmptg 5668 |
. . . . . 6
|
| 22 | 10, 21 | mpdan 421 |
. . . . 5
|
| 23 | 1, 22 | eqtrid 2251 |
. . . 4
|
| 24 | 23 | eleq2d 2276 |
. . 3
|
| 25 | 2, 6, 24 | pm5.21nii 706 |
. 2
|
| 26 | 25 | eqriv 2203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-iress 12915 df-mulr 12998 df-sca 13000 df-vsca 13001 df-ip 13002 df-lssm 14190 df-sra 14272 df-rgmod 14273 df-lidl 14306 df-2idl 14337 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |