ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2idlval Unicode version

Theorem 2idlval 13982
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
2idlval.i  |-  I  =  (LIdeal `  R )
2idlval.o  |-  O  =  (oppr
`  R )
2idlval.j  |-  J  =  (LIdeal `  O )
2idlval.t  |-  T  =  (2Ideal `  R )
Assertion
Ref Expression
2idlval  |-  T  =  ( I  i^i  J
)

Proof of Theorem 2idlval
Dummy variables  x  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2idlval.t . . . 4  |-  T  =  (2Ideal `  R )
212idlmex 13981 . . 3  |-  ( x  e.  T  ->  R  e.  _V )
3 elinel1 3345 . . . 4  |-  ( x  e.  ( I  i^i 
J )  ->  x  e.  I )
4 2idlval.i . . . . 5  |-  I  =  (LIdeal `  R )
54lidlmex 13955 . . . 4  |-  ( x  e.  I  ->  R  e.  _V )
63, 5syl 14 . . 3  |-  ( x  e.  ( I  i^i 
J )  ->  R  e.  _V )
7 lidlex 13953 . . . . . . . 8  |-  ( R  e.  _V  ->  (LIdeal `  R )  e.  _V )
84, 7eqeltrid 2280 . . . . . . 7  |-  ( R  e.  _V  ->  I  e.  _V )
9 inex1g 4165 . . . . . . 7  |-  ( I  e.  _V  ->  (
I  i^i  J )  e.  _V )
108, 9syl 14 . . . . . 6  |-  ( R  e.  _V  ->  (
I  i^i  J )  e.  _V )
11 fveq2 5546 . . . . . . . . 9  |-  ( r  =  R  ->  (LIdeal `  r )  =  (LIdeal `  R ) )
1211, 4eqtr4di 2244 . . . . . . . 8  |-  ( r  =  R  ->  (LIdeal `  r )  =  I )
13 fveq2 5546 . . . . . . . . . . 11  |-  ( r  =  R  ->  (oppr `  r
)  =  (oppr `  R
) )
14 2idlval.o . . . . . . . . . . 11  |-  O  =  (oppr
`  R )
1513, 14eqtr4di 2244 . . . . . . . . . 10  |-  ( r  =  R  ->  (oppr `  r
)  =  O )
1615fveq2d 5550 . . . . . . . . 9  |-  ( r  =  R  ->  (LIdeal `  (oppr
`  r ) )  =  (LIdeal `  O
) )
17 2idlval.j . . . . . . . . 9  |-  J  =  (LIdeal `  O )
1816, 17eqtr4di 2244 . . . . . . . 8  |-  ( r  =  R  ->  (LIdeal `  (oppr
`  r ) )  =  J )
1912, 18ineq12d 3361 . . . . . . 7  |-  ( r  =  R  ->  (
(LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) )  =  ( I  i^i  J ) )
20 df-2idl 13980 . . . . . . 7  |- 2Ideal  =  ( r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
2119, 20fvmptg 5625 . . . . . 6  |-  ( ( R  e.  _V  /\  ( I  i^i  J )  e.  _V )  -> 
(2Ideal `  R )  =  ( I  i^i 
J ) )
2210, 21mpdan 421 . . . . 5  |-  ( R  e.  _V  ->  (2Ideal `  R )  =  ( I  i^i  J ) )
231, 22eqtrid 2238 . . . 4  |-  ( R  e.  _V  ->  T  =  ( I  i^i 
J ) )
2423eleq2d 2263 . . 3  |-  ( R  e.  _V  ->  (
x  e.  T  <->  x  e.  ( I  i^i  J ) ) )
252, 6, 24pm5.21nii 705 . 2  |-  ( x  e.  T  <->  x  e.  ( I  i^i  J ) )
2625eqriv 2190 1  |-  T  =  ( I  i^i  J
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   _Vcvv 2760    i^i cin 3152   ` cfv 5246  opprcoppr 13547  LIdealclidl 13947  2Idealc2idl 13979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-cnex 7953  ax-resscn 7954  ax-1re 7956  ax-addrcl 7959
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-ov 5913  df-oprab 5914  df-mpo 5915  df-inn 8973  df-2 9031  df-3 9032  df-4 9033  df-5 9034  df-6 9035  df-7 9036  df-8 9037  df-ndx 12611  df-slot 12612  df-base 12614  df-sets 12615  df-iress 12616  df-mulr 12699  df-sca 12701  df-vsca 12702  df-ip 12703  df-lssm 13833  df-sra 13915  df-rgmod 13916  df-lidl 13949  df-2idl 13980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator