ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocpr Unicode version

Theorem addlocpr 7458
Description: Locatedness of addition on positive reals. Lemma 11.16 in [BauerTaylor], p. 53. The proof in BauerTaylor relies on signed rationals, so we replace it with another proof which applies prarloc 7425 to both  A and  B, and uses nqtri3or 7318 rather than prloc 7413 to decide whether  q is too big to be in the lower cut of  A  +P.  B (and deduce that if it is, then  r must be in the upper cut). What the two proofs have in common is that they take the difference between  q and  r to determine how tight a range they need around the real numbers. (Contributed by Jim Kingdon, 5-Dec-2019.)
Assertion
Ref Expression
addlocpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  +P.  B
) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
Distinct variable groups:    A, q, r    B, q, r

Proof of Theorem addlocpr
Dummy variables  d  e  h  p  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqq 7330 . . . . . 6  |-  ( ( q  e.  Q.  /\  r  e.  Q. )  ->  ( q  <Q  r  <->  E. p  e.  Q.  (
q  +Q  p )  =  r ) )
21biimpa 294 . . . . 5  |-  ( ( ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  ->  E. p  e.  Q.  ( q  +Q  p
)  =  r )
323adant1 1000 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  ->  E. p  e.  Q.  ( q  +Q  p
)  =  r )
4 halfnqq 7332 . . . . . 6  |-  ( p  e.  Q.  ->  E. h  e.  Q.  ( h  +Q  h )  =  p )
54ad2antrl 482 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  ->  E. h  e.  Q.  ( h  +Q  h )  =  p )
6 prop 7397 . . . . . . . . . 10  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
7 prarloc 7425 . . . . . . . . . 10  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  h  e.  Q. )  ->  E. d  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( d  +Q  h ) )
86, 7sylan 281 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  h  e.  Q. )  ->  E. d  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( d  +Q  h ) )
98adantlr 469 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  h  e.  Q. )  ->  E. d  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( d  +Q  h ) )
1093ad2antl1 1144 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  h  e.  Q. )  ->  E. d  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( d  +Q  h ) )
1110ad2ant2r 501 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  E. d  e.  ( 1st `  A
) E. u  e.  ( 2nd `  A
) u  <Q  (
d  +Q  h ) )
12 prop 7397 . . . . . . . . . . . . . 14  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
13 prarloc 7425 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  h  e.  Q. )  ->  E. e  e.  ( 1st `  B ) E. t  e.  ( 2nd `  B ) t  <Q  ( e  +Q  h ) )
1412, 13sylan 281 . . . . . . . . . . . . 13  |-  ( ( B  e.  P.  /\  h  e.  Q. )  ->  E. e  e.  ( 1st `  B ) E. t  e.  ( 2nd `  B ) t  <Q  ( e  +Q  h ) )
1514adantll 468 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  h  e.  Q. )  ->  E. e  e.  ( 1st `  B ) E. t  e.  ( 2nd `  B ) t  <Q  ( e  +Q  h ) )
16153ad2antl1 1144 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  h  e.  Q. )  ->  E. e  e.  ( 1st `  B ) E. t  e.  ( 2nd `  B ) t  <Q  ( e  +Q  h ) )
1716ad2ant2r 501 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  E. e  e.  ( 1st `  B
) E. t  e.  ( 2nd `  B
) t  <Q  (
e  +Q  h ) )
1817adantr 274 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  ->  E. e  e.  ( 1st `  B ) E. t  e.  ( 2nd `  B ) t  <Q 
( e  +Q  h
) )
19 simpll1 1021 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  ( A  e.  P.  /\  B  e. 
P. ) )
2019ad2antrr 480 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
( A  e.  P.  /\  B  e.  P. )
)
2120simpld 111 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  ->  A  e.  P. )
2220simprd 113 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  ->  B  e.  P. )
23 simpll3 1023 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  q  <Q  r )
2423ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
q  <Q  r )
25 simplrl 525 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  ->  h  e.  Q. )
2625adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  ->  h  e.  Q. )
27 simplrr 526 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  ( q  +Q  p )  =  r )
28 oveq2 5834 . . . . . . . . . . . . . . . 16  |-  ( ( h  +Q  h )  =  p  ->  (
q  +Q  ( h  +Q  h ) )  =  ( q  +Q  p ) )
2928eqeq1d 2166 . . . . . . . . . . . . . . 15  |-  ( ( h  +Q  h )  =  p  ->  (
( q  +Q  (
h  +Q  h ) )  =  r  <->  ( q  +Q  p )  =  r ) )
3029ad2antll 483 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  ( (
q  +Q  ( h  +Q  h ) )  =  r  <->  ( q  +Q  p )  =  r ) )
3127, 30mpbird 166 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  ( q  +Q  ( h  +Q  h
) )  =  r )
3231ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
( q  +Q  (
h  +Q  h ) )  =  r )
33 simprll 527 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  -> 
d  e.  ( 1st `  A ) )
3433adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
d  e.  ( 1st `  A ) )
35 simprlr 528 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  ->  u  e.  ( 2nd `  A ) )
3635adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  ->  u  e.  ( 2nd `  A ) )
37 simplrr 526 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  ->  u  <Q  ( d  +Q  h ) )
38 simprll 527 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
e  e.  ( 1st `  B ) )
39 simprlr 528 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
t  e.  ( 2nd `  B ) )
40 simprr 522 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
t  <Q  ( e  +Q  h ) )
4121, 22, 24, 26, 32, 34, 36, 37, 38, 39, 40addlocprlem 7457 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) )
4241expr 373 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( e  e.  ( 1st `  B )  /\  t  e.  ( 2nd `  B ) ) )  ->  (
t  <Q  ( e  +Q  h )  ->  (
q  e.  ( 1st `  ( A  +P.  B
) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
4342rexlimdvva 2582 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  -> 
( E. e  e.  ( 1st `  B
) E. t  e.  ( 2nd `  B
) t  <Q  (
e  +Q  h )  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
4418, 43mpd 13 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  -> 
( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) )
4544expr 373 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( d  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  ->  (
u  <Q  ( d  +Q  h )  ->  (
q  e.  ( 1st `  ( A  +P.  B
) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
4645rexlimdvva 2582 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  ( E. d  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A
) u  <Q  (
d  +Q  h )  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
4711, 46mpd 13 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) )
485, 47rexlimddv 2579 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  ->  (
q  e.  ( 1st `  ( A  +P.  B
) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) )
493, 48rexlimddv 2579 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) )
50493expia 1187 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  ->  ( q  <Q  r  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
5150ralrimivva 2539 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  +P.  B
) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    = wceq 1335    e. wcel 2128   A.wral 2435   E.wrex 2436   <.cop 3564   class class class wbr 3967   ` cfv 5172  (class class class)co 5826   1stc1st 6088   2ndc2nd 6089   Q.cnq 7202    +Q cplq 7204    <Q cltq 7207   P.cnp 7213    +P. cpp 7215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4081  ax-sep 4084  ax-nul 4092  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-iinf 4549
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-tr 4065  df-eprel 4251  df-id 4255  df-po 4258  df-iso 4259  df-iord 4328  df-on 4330  df-suc 4333  df-iom 4552  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-recs 6254  df-irdg 6319  df-1o 6365  df-2o 6366  df-oadd 6369  df-omul 6370  df-er 6482  df-ec 6484  df-qs 6488  df-ni 7226  df-pli 7227  df-mi 7228  df-lti 7229  df-plpq 7266  df-mpq 7267  df-enq 7269  df-nqqs 7270  df-plqqs 7271  df-mqqs 7272  df-1nqqs 7273  df-rq 7274  df-ltnqqs 7275  df-enq0 7346  df-nq0 7347  df-0nq0 7348  df-plq0 7349  df-mq0 7350  df-inp 7388  df-iplp 7390
This theorem is referenced by:  addclpr  7459
  Copyright terms: Public domain W3C validator