ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocpr Unicode version

Theorem addlocpr 7368
Description: Locatedness of addition on positive reals. Lemma 11.16 in [BauerTaylor], p. 53. The proof in BauerTaylor relies on signed rationals, so we replace it with another proof which applies prarloc 7335 to both  A and  B, and uses nqtri3or 7228 rather than prloc 7323 to decide whether  q is too big to be in the lower cut of  A  +P.  B (and deduce that if it is, then  r must be in the upper cut). What the two proofs have in common is that they take the difference between  q and  r to determine how tight a range they need around the real numbers. (Contributed by Jim Kingdon, 5-Dec-2019.)
Assertion
Ref Expression
addlocpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  +P.  B
) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
Distinct variable groups:    A, q, r    B, q, r

Proof of Theorem addlocpr
Dummy variables  d  e  h  p  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqq 7240 . . . . . 6  |-  ( ( q  e.  Q.  /\  r  e.  Q. )  ->  ( q  <Q  r  <->  E. p  e.  Q.  (
q  +Q  p )  =  r ) )
21biimpa 294 . . . . 5  |-  ( ( ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  ->  E. p  e.  Q.  ( q  +Q  p
)  =  r )
323adant1 1000 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  ->  E. p  e.  Q.  ( q  +Q  p
)  =  r )
4 halfnqq 7242 . . . . . 6  |-  ( p  e.  Q.  ->  E. h  e.  Q.  ( h  +Q  h )  =  p )
54ad2antrl 482 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  ->  E. h  e.  Q.  ( h  +Q  h )  =  p )
6 prop 7307 . . . . . . . . . 10  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
7 prarloc 7335 . . . . . . . . . 10  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  h  e.  Q. )  ->  E. d  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( d  +Q  h ) )
86, 7sylan 281 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  h  e.  Q. )  ->  E. d  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( d  +Q  h ) )
98adantlr 469 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  h  e.  Q. )  ->  E. d  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( d  +Q  h ) )
1093ad2antl1 1144 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  h  e.  Q. )  ->  E. d  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( d  +Q  h ) )
1110ad2ant2r 501 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  E. d  e.  ( 1st `  A
) E. u  e.  ( 2nd `  A
) u  <Q  (
d  +Q  h ) )
12 prop 7307 . . . . . . . . . . . . . 14  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
13 prarloc 7335 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  h  e.  Q. )  ->  E. e  e.  ( 1st `  B ) E. t  e.  ( 2nd `  B ) t  <Q  ( e  +Q  h ) )
1412, 13sylan 281 . . . . . . . . . . . . 13  |-  ( ( B  e.  P.  /\  h  e.  Q. )  ->  E. e  e.  ( 1st `  B ) E. t  e.  ( 2nd `  B ) t  <Q  ( e  +Q  h ) )
1514adantll 468 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  h  e.  Q. )  ->  E. e  e.  ( 1st `  B ) E. t  e.  ( 2nd `  B ) t  <Q  ( e  +Q  h ) )
16153ad2antl1 1144 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  h  e.  Q. )  ->  E. e  e.  ( 1st `  B ) E. t  e.  ( 2nd `  B ) t  <Q  ( e  +Q  h ) )
1716ad2ant2r 501 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  E. e  e.  ( 1st `  B
) E. t  e.  ( 2nd `  B
) t  <Q  (
e  +Q  h ) )
1817adantr 274 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  ->  E. e  e.  ( 1st `  B ) E. t  e.  ( 2nd `  B ) t  <Q 
( e  +Q  h
) )
19 simpll1 1021 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  ( A  e.  P.  /\  B  e. 
P. ) )
2019ad2antrr 480 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
( A  e.  P.  /\  B  e.  P. )
)
2120simpld 111 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  ->  A  e.  P. )
2220simprd 113 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  ->  B  e.  P. )
23 simpll3 1023 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  q  <Q  r )
2423ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
q  <Q  r )
25 simplrl 525 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  ->  h  e.  Q. )
2625adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  ->  h  e.  Q. )
27 simplrr 526 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  ( q  +Q  p )  =  r )
28 oveq2 5790 . . . . . . . . . . . . . . . 16  |-  ( ( h  +Q  h )  =  p  ->  (
q  +Q  ( h  +Q  h ) )  =  ( q  +Q  p ) )
2928eqeq1d 2149 . . . . . . . . . . . . . . 15  |-  ( ( h  +Q  h )  =  p  ->  (
( q  +Q  (
h  +Q  h ) )  =  r  <->  ( q  +Q  p )  =  r ) )
3029ad2antll 483 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  ( (
q  +Q  ( h  +Q  h ) )  =  r  <->  ( q  +Q  p )  =  r ) )
3127, 30mpbird 166 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  ( q  +Q  ( h  +Q  h
) )  =  r )
3231ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
( q  +Q  (
h  +Q  h ) )  =  r )
33 simprll 527 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  -> 
d  e.  ( 1st `  A ) )
3433adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
d  e.  ( 1st `  A ) )
35 simprlr 528 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  ->  u  e.  ( 2nd `  A ) )
3635adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  ->  u  e.  ( 2nd `  A ) )
37 simplrr 526 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  ->  u  <Q  ( d  +Q  h ) )
38 simprll 527 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
e  e.  ( 1st `  B ) )
39 simprlr 528 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
t  e.  ( 2nd `  B ) )
40 simprr 522 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
t  <Q  ( e  +Q  h ) )
4121, 22, 24, 26, 32, 34, 36, 37, 38, 39, 40addlocprlem 7367 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) )
4241expr 373 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( e  e.  ( 1st `  B )  /\  t  e.  ( 2nd `  B ) ) )  ->  (
t  <Q  ( e  +Q  h )  ->  (
q  e.  ( 1st `  ( A  +P.  B
) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
4342rexlimdvva 2560 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  -> 
( E. e  e.  ( 1st `  B
) E. t  e.  ( 2nd `  B
) t  <Q  (
e  +Q  h )  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
4418, 43mpd 13 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  -> 
( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) )
4544expr 373 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( d  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  ->  (
u  <Q  ( d  +Q  h )  ->  (
q  e.  ( 1st `  ( A  +P.  B
) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
4645rexlimdvva 2560 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  ( E. d  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A
) u  <Q  (
d  +Q  h )  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
4711, 46mpd 13 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) )
485, 47rexlimddv 2557 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  ->  (
q  e.  ( 1st `  ( A  +P.  B
) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) )
493, 48rexlimddv 2557 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) )
50493expia 1184 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  ->  ( q  <Q  r  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
5150ralrimivva 2517 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  +P.  B
) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   <.cop 3535   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   1stc1st 6044   2ndc2nd 6045   Q.cnq 7112    +Q cplq 7114    <Q cltq 7117   P.cnp 7123    +P. cpp 7125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300
This theorem is referenced by:  addclpr  7369
  Copyright terms: Public domain W3C validator