ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocpr Unicode version

Theorem addlocpr 7723
Description: Locatedness of addition on positive reals. Lemma 11.16 in [BauerTaylor], p. 53. The proof in BauerTaylor relies on signed rationals, so we replace it with another proof which applies prarloc 7690 to both  A and  B, and uses nqtri3or 7583 rather than prloc 7678 to decide whether  q is too big to be in the lower cut of  A  +P.  B (and deduce that if it is, then  r must be in the upper cut). What the two proofs have in common is that they take the difference between  q and  r to determine how tight a range they need around the real numbers. (Contributed by Jim Kingdon, 5-Dec-2019.)
Assertion
Ref Expression
addlocpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  +P.  B
) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
Distinct variable groups:    A, q, r    B, q, r

Proof of Theorem addlocpr
Dummy variables  d  e  h  p  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqq 7595 . . . . . 6  |-  ( ( q  e.  Q.  /\  r  e.  Q. )  ->  ( q  <Q  r  <->  E. p  e.  Q.  (
q  +Q  p )  =  r ) )
21biimpa 296 . . . . 5  |-  ( ( ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  ->  E. p  e.  Q.  ( q  +Q  p
)  =  r )
323adant1 1039 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  ->  E. p  e.  Q.  ( q  +Q  p
)  =  r )
4 halfnqq 7597 . . . . . 6  |-  ( p  e.  Q.  ->  E. h  e.  Q.  ( h  +Q  h )  =  p )
54ad2antrl 490 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  ->  E. h  e.  Q.  ( h  +Q  h )  =  p )
6 prop 7662 . . . . . . . . . 10  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
7 prarloc 7690 . . . . . . . . . 10  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  h  e.  Q. )  ->  E. d  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( d  +Q  h ) )
86, 7sylan 283 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  h  e.  Q. )  ->  E. d  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( d  +Q  h ) )
98adantlr 477 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  h  e.  Q. )  ->  E. d  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( d  +Q  h ) )
1093ad2antl1 1183 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  h  e.  Q. )  ->  E. d  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( d  +Q  h ) )
1110ad2ant2r 509 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  E. d  e.  ( 1st `  A
) E. u  e.  ( 2nd `  A
) u  <Q  (
d  +Q  h ) )
12 prop 7662 . . . . . . . . . . . . . 14  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
13 prarloc 7690 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  h  e.  Q. )  ->  E. e  e.  ( 1st `  B ) E. t  e.  ( 2nd `  B ) t  <Q  ( e  +Q  h ) )
1412, 13sylan 283 . . . . . . . . . . . . 13  |-  ( ( B  e.  P.  /\  h  e.  Q. )  ->  E. e  e.  ( 1st `  B ) E. t  e.  ( 2nd `  B ) t  <Q  ( e  +Q  h ) )
1514adantll 476 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  h  e.  Q. )  ->  E. e  e.  ( 1st `  B ) E. t  e.  ( 2nd `  B ) t  <Q  ( e  +Q  h ) )
16153ad2antl1 1183 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  h  e.  Q. )  ->  E. e  e.  ( 1st `  B ) E. t  e.  ( 2nd `  B ) t  <Q  ( e  +Q  h ) )
1716ad2ant2r 509 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  E. e  e.  ( 1st `  B
) E. t  e.  ( 2nd `  B
) t  <Q  (
e  +Q  h ) )
1817adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  ->  E. e  e.  ( 1st `  B ) E. t  e.  ( 2nd `  B ) t  <Q 
( e  +Q  h
) )
19 simpll1 1060 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  ( A  e.  P.  /\  B  e. 
P. ) )
2019ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
( A  e.  P.  /\  B  e.  P. )
)
2120simpld 112 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  ->  A  e.  P. )
2220simprd 114 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  ->  B  e.  P. )
23 simpll3 1062 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  q  <Q  r )
2423ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
q  <Q  r )
25 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  ->  h  e.  Q. )
2625adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  ->  h  e.  Q. )
27 simplrr 536 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  ( q  +Q  p )  =  r )
28 oveq2 6009 . . . . . . . . . . . . . . . 16  |-  ( ( h  +Q  h )  =  p  ->  (
q  +Q  ( h  +Q  h ) )  =  ( q  +Q  p ) )
2928eqeq1d 2238 . . . . . . . . . . . . . . 15  |-  ( ( h  +Q  h )  =  p  ->  (
( q  +Q  (
h  +Q  h ) )  =  r  <->  ( q  +Q  p )  =  r ) )
3029ad2antll 491 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  ( (
q  +Q  ( h  +Q  h ) )  =  r  <->  ( q  +Q  p )  =  r ) )
3127, 30mpbird 167 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  ( q  +Q  ( h  +Q  h
) )  =  r )
3231ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
( q  +Q  (
h  +Q  h ) )  =  r )
33 simprll 537 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  -> 
d  e.  ( 1st `  A ) )
3433adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
d  e.  ( 1st `  A ) )
35 simprlr 538 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  ->  u  e.  ( 2nd `  A ) )
3635adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  ->  u  e.  ( 2nd `  A ) )
37 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  ->  u  <Q  ( d  +Q  h ) )
38 simprll 537 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
e  e.  ( 1st `  B ) )
39 simprlr 538 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
t  e.  ( 2nd `  B ) )
40 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
t  <Q  ( e  +Q  h ) )
4121, 22, 24, 26, 32, 34, 36, 37, 38, 39, 40addlocprlem 7722 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( ( e  e.  ( 1st `  B
)  /\  t  e.  ( 2nd `  B ) )  /\  t  <Q 
( e  +Q  h
) ) )  -> 
( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) )
4241expr 375 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  /\  ( e  e.  ( 1st `  B )  /\  t  e.  ( 2nd `  B ) ) )  ->  (
t  <Q  ( e  +Q  h )  ->  (
q  e.  ( 1st `  ( A  +P.  B
) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
4342rexlimdvva 2656 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  -> 
( E. e  e.  ( 1st `  B
) E. t  e.  ( 2nd `  B
) t  <Q  (
e  +Q  h )  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
4418, 43mpd 13 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( ( d  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) )  /\  u  <Q  ( d  +Q  h
) ) )  -> 
( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) )
4544expr 375 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  /\  ( d  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  ->  (
u  <Q  ( d  +Q  h )  ->  (
q  e.  ( 1st `  ( A  +P.  B
) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
4645rexlimdvva 2656 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  ( E. d  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A
) u  <Q  (
d  +Q  h )  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
4711, 46mpd 13 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  /\  (
h  e.  Q.  /\  ( h  +Q  h
)  =  p ) )  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) )
485, 47rexlimddv 2653 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  /\  ( p  e. 
Q.  /\  ( q  +Q  p )  =  r ) )  ->  (
q  e.  ( 1st `  ( A  +P.  B
) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) )
493, 48rexlimddv 2653 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )  /\  q  <Q  r )  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) )
50493expia 1229 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  Q.  /\  r  e.  Q. )
)  ->  ( q  <Q  r  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
5150ralrimivva 2612 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  +P.  B
) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   <.cop 3669   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   1stc1st 6284   2ndc2nd 6285   Q.cnq 7467    +Q cplq 7469    <Q cltq 7472   P.cnp 7478    +P. cpp 7480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-2o 6563  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-enq0 7611  df-nq0 7612  df-0nq0 7613  df-plq0 7614  df-mq0 7615  df-inp 7653  df-iplp 7655
This theorem is referenced by:  addclpr  7724
  Copyright terms: Public domain W3C validator