ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfrecap Unicode version

Theorem prodfrecap 12052
Description: The reciprocal of a finite product. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
Hypotheses
Ref Expression
prodfap0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
prodfap0.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
prodfap0.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k ) #  0 )
prodfrec.4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  =  ( 1  /  ( F `
 k ) ) )
prodfrecap.g  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
Assertion
Ref Expression
prodfrecap  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) )
Distinct variable groups:    k, F    k, M    k, N    ph, k    k, G

Proof of Theorem prodfrecap
Dummy variables  n  v  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfap0.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10224 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5626 . . . . 5  |-  ( m  =  M  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  M
) )
5 fveq2 5626 . . . . . 6  |-  ( m  =  M  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  M
) )
65oveq2d 6016 . . . . 5  |-  ( m  =  M  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) )
74, 6eqeq12d 2244 . . . 4  |-  ( m  =  M  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  M
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  M )
) ) )
87imbi2d 230 . . 3  |-  ( m  =  M  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) ) ) )
9 fveq2 5626 . . . . 5  |-  ( m  =  n  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  n
) )
10 fveq2 5626 . . . . . 6  |-  ( m  =  n  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  n
) )
1110oveq2d 6016 . . . . 5  |-  ( m  =  n  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )
129, 11eqeq12d 2244 . . . 4  |-  ( m  =  n  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  n
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  n )
) ) )
1312imbi2d 230 . . 3  |-  ( m  =  n  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) ) ) )
14 fveq2 5626 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  (
n  +  1 ) ) )
15 fveq2 5626 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )
1615oveq2d 6016 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) )
1714, 16eqeq12d 2244 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  (
n  +  1 ) )  =  ( 1  /  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) ) ) )
1817imbi2d 230 . . 3  |-  ( m  =  ( n  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 ( n  + 
1 ) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
19 fveq2 5626 . . . . 5  |-  ( m  =  N  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  N
) )
20 fveq2 5626 . . . . . 6  |-  ( m  =  N  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  N
) )
2120oveq2d 6016 . . . . 5  |-  ( m  =  N  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) )
2219, 21eqeq12d 2244 . . . 4  |-  ( m  =  N  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  N
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  N )
) ) )
2322imbi2d 230 . . 3  |-  ( m  =  N  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) ) ) )
24 eluzfz1 10223 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
251, 24syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ( M ... N ) )
26 fveq2 5626 . . . . . . . . 9  |-  ( k  =  M  ->  ( G `  k )  =  ( G `  M ) )
27 fveq2 5626 . . . . . . . . . 10  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2827oveq2d 6016 . . . . . . . . 9  |-  ( k  =  M  ->  (
1  /  ( F `
 k ) )  =  ( 1  / 
( F `  M
) ) )
2926, 28eqeq12d 2244 . . . . . . . 8  |-  ( k  =  M  ->  (
( G `  k
)  =  ( 1  /  ( F `  k ) )  <->  ( G `  M )  =  ( 1  /  ( F `
 M ) ) ) )
3029imbi2d 230 . . . . . . 7  |-  ( k  =  M  ->  (
( ph  ->  ( G `
 k )  =  ( 1  /  ( F `  k )
) )  <->  ( ph  ->  ( G `  M
)  =  ( 1  /  ( F `  M ) ) ) ) )
31 prodfrec.4 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  =  ( 1  /  ( F `
 k ) ) )
3231expcom 116 . . . . . . 7  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( G `  k )  =  ( 1  /  ( F `
 k ) ) ) )
3330, 32vtoclga 2867 . . . . . 6  |-  ( M  e.  ( M ... N )  ->  ( ph  ->  ( G `  M )  =  ( 1  /  ( F `
 M ) ) ) )
3425, 33mpcom 36 . . . . 5  |-  ( ph  ->  ( G `  M
)  =  ( 1  /  ( F `  M ) ) )
35 eluzel2 9723 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
361, 35syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
37 prodfrecap.g . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
38 mulcl 8122 . . . . . . 7  |-  ( ( k  e.  CC  /\  v  e.  CC )  ->  ( k  x.  v
)  e.  CC )
3938adantl 277 . . . . . 6  |-  ( (
ph  /\  ( k  e.  CC  /\  v  e.  CC ) )  -> 
( k  x.  v
)  e.  CC )
4036, 37, 39seq3-1 10679 . . . . 5  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( G `  M
) )
41 prodfap0.2 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
4236, 41, 39seq3-1 10679 . . . . . 6  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 M )  =  ( F `  M
) )
4342oveq2d 6016 . . . . 5  |-  ( ph  ->  ( 1  /  (  seq M (  x.  ,  F ) `  M
) )  =  ( 1  /  ( F `
 M ) ) )
4434, 40, 433eqtr4d 2272 . . . 4  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) )
4544a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) ) )
46 oveq1 6007 . . . . . . . . 9  |-  ( (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) )  ->  (
(  seq M (  x.  ,  G ) `  n )  x.  ( G `  ( n  +  1 ) ) )  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  n
) )  x.  ( G `  ( n  +  1 ) ) ) )
47463ad2ant3 1044 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  G
) `  n )  x.  ( G `  (
n  +  1 ) ) )  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  n
) )  x.  ( G `  ( n  +  1 ) ) ) )
48 fzofzp1 10428 . . . . . . . . . . . . 13  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( M ... N
) )
49 fveq2 5626 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  ( G `  k )  =  ( G `  ( n  +  1
) ) )
50 fveq2 5626 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
5150oveq2d 6016 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  (
1  /  ( F `
 k ) )  =  ( 1  / 
( F `  (
n  +  1 ) ) ) )
5249, 51eqeq12d 2244 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  (
( G `  k
)  =  ( 1  /  ( F `  k ) )  <->  ( G `  ( n  +  1 ) )  =  ( 1  /  ( F `
 ( n  + 
1 ) ) ) ) )
5352imbi2d 230 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( G `
 k )  =  ( 1  /  ( F `  k )
) )  <->  ( ph  ->  ( G `  (
n  +  1 ) )  =  ( 1  /  ( F `  ( n  +  1
) ) ) ) ) )
5453, 32vtoclga 2867 . . . . . . . . . . . . 13  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( G `  ( n  +  1
) )  =  ( 1  /  ( F `
 ( n  + 
1 ) ) ) ) )
5548, 54syl 14 . . . . . . . . . . . 12  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( G `  (
n  +  1 ) )  =  ( 1  /  ( F `  ( n  +  1
) ) ) ) )
5655impcom 125 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( G `  ( n  +  1
) )  =  ( 1  /  ( F `
 ( n  + 
1 ) ) ) )
5756oveq2d 6016 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( G `
 ( n  + 
1 ) ) )  =  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( 1  /  ( F `  ( n  +  1
) ) ) ) )
58 1cnd 8158 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  1  e.  CC )
59 eqid 2229 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
6059, 36, 41prodf 12044 . . . . . . . . . . . . . 14  |-  ( ph  ->  seq M (  x.  ,  F ) : ( ZZ>= `  M ) --> CC )
6160adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  seq M (  x.  ,  F ) : ( ZZ>= `  M ) --> CC )
62 elfzouz 10343 . . . . . . . . . . . . . 14  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( ZZ>= `  M )
)
6362adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  n  e.  (
ZZ>= `  M ) )
6461, 63ffvelcdmd 5770 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  x.  ,  F
) `  n )  e.  CC )
6550eleq1d 2298 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  CC  <->  ( F `  ( n  +  1 ) )  e.  CC ) )
6665imbi2d 230 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k )  e.  CC )  <->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) ) )
67 elfzuz 10213 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
6841expcom 116 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( F `  k
)  e.  CC ) )
6967, 68syl 14 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k )  e.  CC ) )
7066, 69vtoclga 2867 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) )  e.  CC ) )
7148, 70syl 14 . . . . . . . . . . . . 13  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) )
7271impcom 125 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) )  e.  CC )
7341adantlr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
74 elfzouz2 10354 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( M..^ N
)  ->  N  e.  ( ZZ>= `  n )
)
75 fzss2 10256 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  n
)  ->  ( M ... n )  C_  ( M ... N ) )
7674, 75syl 14 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( M..^ N
)  ->  ( M ... n )  C_  ( M ... N ) )
7776sselda 3224 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( M..^ N )  /\  k  e.  ( M ... n
) )  ->  k  e.  ( M ... N
) )
78 prodfap0.3 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k ) #  0 )
7977, 78sylan2 286 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( M..^ N )  /\  k  e.  ( M ... n ) ) )  ->  ( F `  k ) #  0 )
8079anassrs 400 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  k  e.  ( M ... n
) )  ->  ( F `  k ) #  0 )
8163, 73, 80prodfap0 12051 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  x.  ,  F
) `  n ) #  0 )
8250breq1d 4092 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
) #  0  <->  ( F `  ( n  +  1 ) ) #  0 ) )
8382imbi2d 230 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k ) #  0 )  <->  ( ph  ->  ( F `  ( n  +  1 ) ) #  0 ) ) )
8478expcom 116 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k ) #  0 ) )
8583, 84vtoclga 2867 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) ) #  0 ) )
8648, 85syl 14 . . . . . . . . . . . . 13  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( F `  (
n  +  1 ) ) #  0 ) )
8786impcom 125 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) ) #  0 )
8858, 64, 58, 72, 81, 87divmuldivapd 8975 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( 1  /  ( F `  ( n  +  1
) ) ) )  =  ( ( 1  x.  1 )  / 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
89 1t1e1 9259 . . . . . . . . . . . 12  |-  ( 1  x.  1 )  =  1
9089oveq1i 6010 . . . . . . . . . . 11  |-  ( ( 1  x.  1 )  /  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) )
9188, 90eqtrdi 2278 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( 1  /  ( F `  ( n  +  1
) ) ) )  =  ( 1  / 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
9257, 91eqtrd 2262 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( G `
 ( n  + 
1 ) ) )  =  ( 1  / 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
93923adant3 1041 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( ( 1  / 
(  seq M (  x.  ,  F ) `  n ) )  x.  ( G `  (
n  +  1 ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
9447, 93eqtrd 2262 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  G
) `  n )  x.  ( G `  (
n  +  1 ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
95633adant3 1041 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  ->  n  e.  ( ZZ>= `  M ) )
96373ad2antl1 1183 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( M..^ N )  /\  (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) ) )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( G `  k )  e.  CC )
9738adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( M..^ N )  /\  (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) ) )  /\  ( k  e.  CC  /\  v  e.  CC ) )  -> 
( k  x.  v
)  e.  CC )
9895, 96, 97seq3p1 10682 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  G ) `
 n )  x.  ( G `  (
n  +  1 ) ) ) )
99413ad2antl1 1183 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( M..^ N )  /\  (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) ) )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( F `  k )  e.  CC )
10095, 99, 97seq3p1 10682 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  F ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 n )  x.  ( F `  (
n  +  1 ) ) ) )
101100oveq2d 6016 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
10294, 98, 1013eqtr4d 2272 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) )
1031023exp 1226 . . . . 5  |-  ( ph  ->  ( n  e.  ( M..^ N )  -> 
( (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
104103com12 30 . . . 4  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
105104a2d 26 . . 3  |-  ( n  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) ) )  ->  ( ph  ->  (  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
1068, 13, 18, 23, 45, 105fzind2 10440 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  x.  ,  G
) `  N )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  N ) ) ) )
1073, 106mpcom 36 1  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200    C_ wss 3197   class class class wbr 4082   -->wf 5313   ` cfv 5317  (class class class)co 6000   CCcc 7993   0cc0 7995   1c1 7996    + caddc 7998    x. cmul 8000   # cap 8724    / cdiv 8815   ZZcz 9442   ZZ>=cuz 9718   ...cfz 10200  ..^cfzo 10334    seqcseq 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-seqfrec 10665
This theorem is referenced by:  prodfdivap  12053
  Copyright terms: Public domain W3C validator