ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfrecap Unicode version

Theorem prodfrecap 11509
Description: The reciprocal of a finite product. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
Hypotheses
Ref Expression
prodfap0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
prodfap0.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
prodfap0.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k ) #  0 )
prodfrec.4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  =  ( 1  /  ( F `
 k ) ) )
prodfrecap.g  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
Assertion
Ref Expression
prodfrecap  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) )
Distinct variable groups:    k, F    k, M    k, N    ph, k    k, G

Proof of Theorem prodfrecap
Dummy variables  n  v  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfap0.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 9988 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5496 . . . . 5  |-  ( m  =  M  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  M
) )
5 fveq2 5496 . . . . . 6  |-  ( m  =  M  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  M
) )
65oveq2d 5869 . . . . 5  |-  ( m  =  M  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) )
74, 6eqeq12d 2185 . . . 4  |-  ( m  =  M  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  M
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  M )
) ) )
87imbi2d 229 . . 3  |-  ( m  =  M  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) ) ) )
9 fveq2 5496 . . . . 5  |-  ( m  =  n  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  n
) )
10 fveq2 5496 . . . . . 6  |-  ( m  =  n  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  n
) )
1110oveq2d 5869 . . . . 5  |-  ( m  =  n  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )
129, 11eqeq12d 2185 . . . 4  |-  ( m  =  n  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  n
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  n )
) ) )
1312imbi2d 229 . . 3  |-  ( m  =  n  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) ) ) )
14 fveq2 5496 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  (
n  +  1 ) ) )
15 fveq2 5496 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )
1615oveq2d 5869 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) )
1714, 16eqeq12d 2185 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  (
n  +  1 ) )  =  ( 1  /  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) ) ) )
1817imbi2d 229 . . 3  |-  ( m  =  ( n  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 ( n  + 
1 ) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
19 fveq2 5496 . . . . 5  |-  ( m  =  N  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  N
) )
20 fveq2 5496 . . . . . 6  |-  ( m  =  N  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  N
) )
2120oveq2d 5869 . . . . 5  |-  ( m  =  N  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) )
2219, 21eqeq12d 2185 . . . 4  |-  ( m  =  N  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  N
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  N )
) ) )
2322imbi2d 229 . . 3  |-  ( m  =  N  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) ) ) )
24 eluzfz1 9987 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
251, 24syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ( M ... N ) )
26 fveq2 5496 . . . . . . . . 9  |-  ( k  =  M  ->  ( G `  k )  =  ( G `  M ) )
27 fveq2 5496 . . . . . . . . . 10  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2827oveq2d 5869 . . . . . . . . 9  |-  ( k  =  M  ->  (
1  /  ( F `
 k ) )  =  ( 1  / 
( F `  M
) ) )
2926, 28eqeq12d 2185 . . . . . . . 8  |-  ( k  =  M  ->  (
( G `  k
)  =  ( 1  /  ( F `  k ) )  <->  ( G `  M )  =  ( 1  /  ( F `
 M ) ) ) )
3029imbi2d 229 . . . . . . 7  |-  ( k  =  M  ->  (
( ph  ->  ( G `
 k )  =  ( 1  /  ( F `  k )
) )  <->  ( ph  ->  ( G `  M
)  =  ( 1  /  ( F `  M ) ) ) ) )
31 prodfrec.4 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  =  ( 1  /  ( F `
 k ) ) )
3231expcom 115 . . . . . . 7  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( G `  k )  =  ( 1  /  ( F `
 k ) ) ) )
3330, 32vtoclga 2796 . . . . . 6  |-  ( M  e.  ( M ... N )  ->  ( ph  ->  ( G `  M )  =  ( 1  /  ( F `
 M ) ) ) )
3425, 33mpcom 36 . . . . 5  |-  ( ph  ->  ( G `  M
)  =  ( 1  /  ( F `  M ) ) )
35 eluzel2 9492 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
361, 35syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
37 prodfrecap.g . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
38 mulcl 7901 . . . . . . 7  |-  ( ( k  e.  CC  /\  v  e.  CC )  ->  ( k  x.  v
)  e.  CC )
3938adantl 275 . . . . . 6  |-  ( (
ph  /\  ( k  e.  CC  /\  v  e.  CC ) )  -> 
( k  x.  v
)  e.  CC )
4036, 37, 39seq3-1 10416 . . . . 5  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( G `  M
) )
41 prodfap0.2 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
4236, 41, 39seq3-1 10416 . . . . . 6  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 M )  =  ( F `  M
) )
4342oveq2d 5869 . . . . 5  |-  ( ph  ->  ( 1  /  (  seq M (  x.  ,  F ) `  M
) )  =  ( 1  /  ( F `
 M ) ) )
4434, 40, 433eqtr4d 2213 . . . 4  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) )
4544a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) ) )
46 oveq1 5860 . . . . . . . . 9  |-  ( (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) )  ->  (
(  seq M (  x.  ,  G ) `  n )  x.  ( G `  ( n  +  1 ) ) )  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  n
) )  x.  ( G `  ( n  +  1 ) ) ) )
47463ad2ant3 1015 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  G
) `  n )  x.  ( G `  (
n  +  1 ) ) )  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  n
) )  x.  ( G `  ( n  +  1 ) ) ) )
48 fzofzp1 10183 . . . . . . . . . . . . 13  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( M ... N
) )
49 fveq2 5496 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  ( G `  k )  =  ( G `  ( n  +  1
) ) )
50 fveq2 5496 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
5150oveq2d 5869 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  (
1  /  ( F `
 k ) )  =  ( 1  / 
( F `  (
n  +  1 ) ) ) )
5249, 51eqeq12d 2185 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  (
( G `  k
)  =  ( 1  /  ( F `  k ) )  <->  ( G `  ( n  +  1 ) )  =  ( 1  /  ( F `
 ( n  + 
1 ) ) ) ) )
5352imbi2d 229 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( G `
 k )  =  ( 1  /  ( F `  k )
) )  <->  ( ph  ->  ( G `  (
n  +  1 ) )  =  ( 1  /  ( F `  ( n  +  1
) ) ) ) ) )
5453, 32vtoclga 2796 . . . . . . . . . . . . 13  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( G `  ( n  +  1
) )  =  ( 1  /  ( F `
 ( n  + 
1 ) ) ) ) )
5548, 54syl 14 . . . . . . . . . . . 12  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( G `  (
n  +  1 ) )  =  ( 1  /  ( F `  ( n  +  1
) ) ) ) )
5655impcom 124 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( G `  ( n  +  1
) )  =  ( 1  /  ( F `
 ( n  + 
1 ) ) ) )
5756oveq2d 5869 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( G `
 ( n  + 
1 ) ) )  =  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( 1  /  ( F `  ( n  +  1
) ) ) ) )
58 1cnd 7936 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  1  e.  CC )
59 eqid 2170 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
6059, 36, 41prodf 11501 . . . . . . . . . . . . . 14  |-  ( ph  ->  seq M (  x.  ,  F ) : ( ZZ>= `  M ) --> CC )
6160adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  seq M (  x.  ,  F ) : ( ZZ>= `  M ) --> CC )
62 elfzouz 10107 . . . . . . . . . . . . . 14  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( ZZ>= `  M )
)
6362adantl 275 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  n  e.  (
ZZ>= `  M ) )
6461, 63ffvelrnd 5632 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  x.  ,  F
) `  n )  e.  CC )
6550eleq1d 2239 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  CC  <->  ( F `  ( n  +  1 ) )  e.  CC ) )
6665imbi2d 229 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k )  e.  CC )  <->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) ) )
67 elfzuz 9977 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
6841expcom 115 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( F `  k
)  e.  CC ) )
6967, 68syl 14 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k )  e.  CC ) )
7066, 69vtoclga 2796 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) )  e.  CC ) )
7148, 70syl 14 . . . . . . . . . . . . 13  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) )
7271impcom 124 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) )  e.  CC )
7341adantlr 474 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
74 elfzouz2 10117 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( M..^ N
)  ->  N  e.  ( ZZ>= `  n )
)
75 fzss2 10020 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  n
)  ->  ( M ... n )  C_  ( M ... N ) )
7674, 75syl 14 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( M..^ N
)  ->  ( M ... n )  C_  ( M ... N ) )
7776sselda 3147 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( M..^ N )  /\  k  e.  ( M ... n
) )  ->  k  e.  ( M ... N
) )
78 prodfap0.3 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k ) #  0 )
7977, 78sylan2 284 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( M..^ N )  /\  k  e.  ( M ... n ) ) )  ->  ( F `  k ) #  0 )
8079anassrs 398 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  k  e.  ( M ... n
) )  ->  ( F `  k ) #  0 )
8163, 73, 80prodfap0 11508 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  x.  ,  F
) `  n ) #  0 )
8250breq1d 3999 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
) #  0  <->  ( F `  ( n  +  1 ) ) #  0 ) )
8382imbi2d 229 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k ) #  0 )  <->  ( ph  ->  ( F `  ( n  +  1 ) ) #  0 ) ) )
8478expcom 115 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k ) #  0 ) )
8583, 84vtoclga 2796 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) ) #  0 ) )
8648, 85syl 14 . . . . . . . . . . . . 13  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( F `  (
n  +  1 ) ) #  0 ) )
8786impcom 124 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) ) #  0 )
8858, 64, 58, 72, 81, 87divmuldivapd 8749 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( 1  /  ( F `  ( n  +  1
) ) ) )  =  ( ( 1  x.  1 )  / 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
89 1t1e1 9030 . . . . . . . . . . . 12  |-  ( 1  x.  1 )  =  1
9089oveq1i 5863 . . . . . . . . . . 11  |-  ( ( 1  x.  1 )  /  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) )
9188, 90eqtrdi 2219 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( 1  /  ( F `  ( n  +  1
) ) ) )  =  ( 1  / 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
9257, 91eqtrd 2203 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( G `
 ( n  + 
1 ) ) )  =  ( 1  / 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
93923adant3 1012 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( ( 1  / 
(  seq M (  x.  ,  F ) `  n ) )  x.  ( G `  (
n  +  1 ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
9447, 93eqtrd 2203 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  G
) `  n )  x.  ( G `  (
n  +  1 ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
95633adant3 1012 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  ->  n  e.  ( ZZ>= `  M ) )
96373ad2antl1 1154 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( M..^ N )  /\  (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) ) )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( G `  k )  e.  CC )
9738adantl 275 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( M..^ N )  /\  (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) ) )  /\  ( k  e.  CC  /\  v  e.  CC ) )  -> 
( k  x.  v
)  e.  CC )
9895, 96, 97seq3p1 10418 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  G ) `
 n )  x.  ( G `  (
n  +  1 ) ) ) )
99413ad2antl1 1154 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( M..^ N )  /\  (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) ) )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( F `  k )  e.  CC )
10095, 99, 97seq3p1 10418 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  F ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 n )  x.  ( F `  (
n  +  1 ) ) ) )
101100oveq2d 5869 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
10294, 98, 1013eqtr4d 2213 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) )
1031023exp 1197 . . . . 5  |-  ( ph  ->  ( n  e.  ( M..^ N )  -> 
( (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
104103com12 30 . . . 4  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
105104a2d 26 . . 3  |-  ( n  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) ) )  ->  ( ph  ->  (  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
1068, 13, 18, 23, 45, 105fzind2 10195 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  x.  ,  G
) `  N )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  N ) ) ) )
1073, 106mpcom 36 1  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141    C_ wss 3121   class class class wbr 3989   -->wf 5194   ` cfv 5198  (class class class)co 5853   CCcc 7772   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779   # cap 8500    / cdiv 8589   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965  ..^cfzo 10098    seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-fzo 10099  df-seqfrec 10402
This theorem is referenced by:  prodfdivap  11510
  Copyright terms: Public domain W3C validator