ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfrecap Unicode version

Theorem prodfrecap 11728
Description: The reciprocal of a finite product. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
Hypotheses
Ref Expression
prodfap0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
prodfap0.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
prodfap0.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k ) #  0 )
prodfrec.4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  =  ( 1  /  ( F `
 k ) ) )
prodfrecap.g  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
Assertion
Ref Expression
prodfrecap  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) )
Distinct variable groups:    k, F    k, M    k, N    ph, k    k, G

Proof of Theorem prodfrecap
Dummy variables  n  v  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfap0.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10124 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5561 . . . . 5  |-  ( m  =  M  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  M
) )
5 fveq2 5561 . . . . . 6  |-  ( m  =  M  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  M
) )
65oveq2d 5941 . . . . 5  |-  ( m  =  M  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) )
74, 6eqeq12d 2211 . . . 4  |-  ( m  =  M  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  M
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  M )
) ) )
87imbi2d 230 . . 3  |-  ( m  =  M  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) ) ) )
9 fveq2 5561 . . . . 5  |-  ( m  =  n  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  n
) )
10 fveq2 5561 . . . . . 6  |-  ( m  =  n  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  n
) )
1110oveq2d 5941 . . . . 5  |-  ( m  =  n  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )
129, 11eqeq12d 2211 . . . 4  |-  ( m  =  n  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  n
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  n )
) ) )
1312imbi2d 230 . . 3  |-  ( m  =  n  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) ) ) )
14 fveq2 5561 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  (
n  +  1 ) ) )
15 fveq2 5561 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )
1615oveq2d 5941 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) )
1714, 16eqeq12d 2211 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  (
n  +  1 ) )  =  ( 1  /  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) ) ) )
1817imbi2d 230 . . 3  |-  ( m  =  ( n  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 ( n  + 
1 ) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
19 fveq2 5561 . . . . 5  |-  ( m  =  N  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  N
) )
20 fveq2 5561 . . . . . 6  |-  ( m  =  N  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  N
) )
2120oveq2d 5941 . . . . 5  |-  ( m  =  N  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) )
2219, 21eqeq12d 2211 . . . 4  |-  ( m  =  N  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  N
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  N )
) ) )
2322imbi2d 230 . . 3  |-  ( m  =  N  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) ) ) )
24 eluzfz1 10123 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
251, 24syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ( M ... N ) )
26 fveq2 5561 . . . . . . . . 9  |-  ( k  =  M  ->  ( G `  k )  =  ( G `  M ) )
27 fveq2 5561 . . . . . . . . . 10  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2827oveq2d 5941 . . . . . . . . 9  |-  ( k  =  M  ->  (
1  /  ( F `
 k ) )  =  ( 1  / 
( F `  M
) ) )
2926, 28eqeq12d 2211 . . . . . . . 8  |-  ( k  =  M  ->  (
( G `  k
)  =  ( 1  /  ( F `  k ) )  <->  ( G `  M )  =  ( 1  /  ( F `
 M ) ) ) )
3029imbi2d 230 . . . . . . 7  |-  ( k  =  M  ->  (
( ph  ->  ( G `
 k )  =  ( 1  /  ( F `  k )
) )  <->  ( ph  ->  ( G `  M
)  =  ( 1  /  ( F `  M ) ) ) ) )
31 prodfrec.4 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  =  ( 1  /  ( F `
 k ) ) )
3231expcom 116 . . . . . . 7  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( G `  k )  =  ( 1  /  ( F `
 k ) ) ) )
3330, 32vtoclga 2830 . . . . . 6  |-  ( M  e.  ( M ... N )  ->  ( ph  ->  ( G `  M )  =  ( 1  /  ( F `
 M ) ) ) )
3425, 33mpcom 36 . . . . 5  |-  ( ph  ->  ( G `  M
)  =  ( 1  /  ( F `  M ) ) )
35 eluzel2 9623 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
361, 35syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
37 prodfrecap.g . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
38 mulcl 8023 . . . . . . 7  |-  ( ( k  e.  CC  /\  v  e.  CC )  ->  ( k  x.  v
)  e.  CC )
3938adantl 277 . . . . . 6  |-  ( (
ph  /\  ( k  e.  CC  /\  v  e.  CC ) )  -> 
( k  x.  v
)  e.  CC )
4036, 37, 39seq3-1 10571 . . . . 5  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( G `  M
) )
41 prodfap0.2 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
4236, 41, 39seq3-1 10571 . . . . . 6  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 M )  =  ( F `  M
) )
4342oveq2d 5941 . . . . 5  |-  ( ph  ->  ( 1  /  (  seq M (  x.  ,  F ) `  M
) )  =  ( 1  /  ( F `
 M ) ) )
4434, 40, 433eqtr4d 2239 . . . 4  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) )
4544a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) ) )
46 oveq1 5932 . . . . . . . . 9  |-  ( (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) )  ->  (
(  seq M (  x.  ,  G ) `  n )  x.  ( G `  ( n  +  1 ) ) )  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  n
) )  x.  ( G `  ( n  +  1 ) ) ) )
47463ad2ant3 1022 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  G
) `  n )  x.  ( G `  (
n  +  1 ) ) )  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  n
) )  x.  ( G `  ( n  +  1 ) ) ) )
48 fzofzp1 10320 . . . . . . . . . . . . 13  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( M ... N
) )
49 fveq2 5561 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  ( G `  k )  =  ( G `  ( n  +  1
) ) )
50 fveq2 5561 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
5150oveq2d 5941 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  (
1  /  ( F `
 k ) )  =  ( 1  / 
( F `  (
n  +  1 ) ) ) )
5249, 51eqeq12d 2211 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  (
( G `  k
)  =  ( 1  /  ( F `  k ) )  <->  ( G `  ( n  +  1 ) )  =  ( 1  /  ( F `
 ( n  + 
1 ) ) ) ) )
5352imbi2d 230 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( G `
 k )  =  ( 1  /  ( F `  k )
) )  <->  ( ph  ->  ( G `  (
n  +  1 ) )  =  ( 1  /  ( F `  ( n  +  1
) ) ) ) ) )
5453, 32vtoclga 2830 . . . . . . . . . . . . 13  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( G `  ( n  +  1
) )  =  ( 1  /  ( F `
 ( n  + 
1 ) ) ) ) )
5548, 54syl 14 . . . . . . . . . . . 12  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( G `  (
n  +  1 ) )  =  ( 1  /  ( F `  ( n  +  1
) ) ) ) )
5655impcom 125 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( G `  ( n  +  1
) )  =  ( 1  /  ( F `
 ( n  + 
1 ) ) ) )
5756oveq2d 5941 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( G `
 ( n  + 
1 ) ) )  =  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( 1  /  ( F `  ( n  +  1
) ) ) ) )
58 1cnd 8059 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  1  e.  CC )
59 eqid 2196 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
6059, 36, 41prodf 11720 . . . . . . . . . . . . . 14  |-  ( ph  ->  seq M (  x.  ,  F ) : ( ZZ>= `  M ) --> CC )
6160adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  seq M (  x.  ,  F ) : ( ZZ>= `  M ) --> CC )
62 elfzouz 10243 . . . . . . . . . . . . . 14  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( ZZ>= `  M )
)
6362adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  n  e.  (
ZZ>= `  M ) )
6461, 63ffvelcdmd 5701 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  x.  ,  F
) `  n )  e.  CC )
6550eleq1d 2265 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  CC  <->  ( F `  ( n  +  1 ) )  e.  CC ) )
6665imbi2d 230 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k )  e.  CC )  <->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) ) )
67 elfzuz 10113 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
6841expcom 116 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( F `  k
)  e.  CC ) )
6967, 68syl 14 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k )  e.  CC ) )
7066, 69vtoclga 2830 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) )  e.  CC ) )
7148, 70syl 14 . . . . . . . . . . . . 13  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) )
7271impcom 125 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) )  e.  CC )
7341adantlr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
74 elfzouz2 10254 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( M..^ N
)  ->  N  e.  ( ZZ>= `  n )
)
75 fzss2 10156 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  n
)  ->  ( M ... n )  C_  ( M ... N ) )
7674, 75syl 14 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( M..^ N
)  ->  ( M ... n )  C_  ( M ... N ) )
7776sselda 3184 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( M..^ N )  /\  k  e.  ( M ... n
) )  ->  k  e.  ( M ... N
) )
78 prodfap0.3 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k ) #  0 )
7977, 78sylan2 286 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( M..^ N )  /\  k  e.  ( M ... n ) ) )  ->  ( F `  k ) #  0 )
8079anassrs 400 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  k  e.  ( M ... n
) )  ->  ( F `  k ) #  0 )
8163, 73, 80prodfap0 11727 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  x.  ,  F
) `  n ) #  0 )
8250breq1d 4044 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
) #  0  <->  ( F `  ( n  +  1 ) ) #  0 ) )
8382imbi2d 230 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k ) #  0 )  <->  ( ph  ->  ( F `  ( n  +  1 ) ) #  0 ) ) )
8478expcom 116 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k ) #  0 ) )
8583, 84vtoclga 2830 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) ) #  0 ) )
8648, 85syl 14 . . . . . . . . . . . . 13  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( F `  (
n  +  1 ) ) #  0 ) )
8786impcom 125 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) ) #  0 )
8858, 64, 58, 72, 81, 87divmuldivapd 8876 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( 1  /  ( F `  ( n  +  1
) ) ) )  =  ( ( 1  x.  1 )  / 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
89 1t1e1 9160 . . . . . . . . . . . 12  |-  ( 1  x.  1 )  =  1
9089oveq1i 5935 . . . . . . . . . . 11  |-  ( ( 1  x.  1 )  /  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) )
9188, 90eqtrdi 2245 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( 1  /  ( F `  ( n  +  1
) ) ) )  =  ( 1  / 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
9257, 91eqtrd 2229 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( G `
 ( n  + 
1 ) ) )  =  ( 1  / 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
93923adant3 1019 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( ( 1  / 
(  seq M (  x.  ,  F ) `  n ) )  x.  ( G `  (
n  +  1 ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
9447, 93eqtrd 2229 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  G
) `  n )  x.  ( G `  (
n  +  1 ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
95633adant3 1019 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  ->  n  e.  ( ZZ>= `  M ) )
96373ad2antl1 1161 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( M..^ N )  /\  (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) ) )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( G `  k )  e.  CC )
9738adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( M..^ N )  /\  (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) ) )  /\  ( k  e.  CC  /\  v  e.  CC ) )  -> 
( k  x.  v
)  e.  CC )
9895, 96, 97seq3p1 10574 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  G ) `
 n )  x.  ( G `  (
n  +  1 ) ) ) )
99413ad2antl1 1161 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( M..^ N )  /\  (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) ) )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( F `  k )  e.  CC )
10095, 99, 97seq3p1 10574 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  F ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  F ) `
 n )  x.  ( F `  (
n  +  1 ) ) ) )
101100oveq2d 5941 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
10294, 98, 1013eqtr4d 2239 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) )
1031023exp 1204 . . . . 5  |-  ( ph  ->  ( n  e.  ( M..^ N )  -> 
( (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
104103com12 30 . . . 4  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
105104a2d 26 . . 3  |-  ( n  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) ) )  ->  ( ph  ->  (  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
1068, 13, 18, 23, 45, 105fzind2 10332 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  x.  ,  G
) `  N )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  N ) ) ) )
1073, 106mpcom 36 1  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167    C_ wss 3157   class class class wbr 4034   -->wf 5255   ` cfv 5259  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901   # cap 8625    / cdiv 8716   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100  ..^cfzo 10234    seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235  df-seqfrec 10557
This theorem is referenced by:  prodfdivap  11729
  Copyright terms: Public domain W3C validator