ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfap0 Unicode version

Theorem prodfap0 11688
Description: The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.)
Hypotheses
Ref Expression
prodfap0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
prodfap0.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
prodfap0.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k ) #  0 )
Assertion
Ref Expression
prodfap0  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem prodfap0
Dummy variables  n  v  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfap0.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10098 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5554 . . . . 5  |-  ( m  =  M  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  M
) )
54breq1d 4039 . . . 4  |-  ( m  =  M  ->  (
(  seq M (  x.  ,  F ) `  m ) #  0  <->  (  seq M (  x.  ,  F ) `  M
) #  0 ) )
65imbi2d 230 . . 3  |-  ( m  =  M  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
) #  0 )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 M ) #  0 ) ) )
7 fveq2 5554 . . . . 5  |-  ( m  =  n  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  n
) )
87breq1d 4039 . . . 4  |-  ( m  =  n  ->  (
(  seq M (  x.  ,  F ) `  m ) #  0  <->  (  seq M (  x.  ,  F ) `  n
) #  0 ) )
98imbi2d 230 . . 3  |-  ( m  =  n  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
) #  0 )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 n ) #  0 ) ) )
10 fveq2 5554 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )
1110breq1d 4039 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  m ) #  0  <->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) #  0 ) )
1211imbi2d 230 . . 3  |-  ( m  =  ( n  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
) #  0 )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( n  + 
1 ) ) #  0 ) ) )
13 fveq2 5554 . . . . 5  |-  ( m  =  N  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  N
) )
1413breq1d 4039 . . . 4  |-  ( m  =  N  ->  (
(  seq M (  x.  ,  F ) `  m ) #  0  <->  (  seq M (  x.  ,  F ) `  N
) #  0 ) )
1514imbi2d 230 . . 3  |-  ( m  =  N  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
) #  0 )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 ) ) )
16 eluzfz1 10097 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
17 elfzelz 10091 . . . . . . . 8  |-  ( M  e.  ( M ... N )  ->  M  e.  ZZ )
1817adantl 277 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  M  e.  ZZ )
19 prodfap0.2 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
2019adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  M  e.  ( M ... N
) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
21 mulcl 7999 . . . . . . . 8  |-  ( ( k  e.  CC  /\  v  e.  CC )  ->  ( k  x.  v
)  e.  CC )
2221adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  M  e.  ( M ... N
) )  /\  (
k  e.  CC  /\  v  e.  CC )
)  ->  ( k  x.  v )  e.  CC )
2318, 20, 22seq3-1 10533 . . . . . 6  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  (  seq M (  x.  ,  F ) `  M
)  =  ( F `
 M ) )
24 fveq2 5554 . . . . . . . . . 10  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2524breq1d 4039 . . . . . . . . 9  |-  ( k  =  M  ->  (
( F `  k
) #  0  <->  ( F `  M ) #  0 ) )
2625imbi2d 230 . . . . . . . 8  |-  ( k  =  M  ->  (
( ph  ->  ( F `
 k ) #  0 )  <->  ( ph  ->  ( F `  M ) #  0 ) ) )
27 prodfap0.3 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k ) #  0 )
2827expcom 116 . . . . . . . 8  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k ) #  0 ) )
2926, 28vtoclga 2826 . . . . . . 7  |-  ( M  e.  ( M ... N )  ->  ( ph  ->  ( F `  M ) #  0 ) )
3029impcom 125 . . . . . 6  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  ( F `  M ) #  0 )
3123, 30eqbrtrd 4051 . . . . 5  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  (  seq M (  x.  ,  F ) `  M
) #  0 )
3231expcom 116 . . . 4  |-  ( M  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  M ) #  0 ) )
3316, 32syl 14 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M (  x.  ,  F ) `
 M ) #  0 ) )
34 elfzouz 10217 . . . . . . . . 9  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( ZZ>= `  M )
)
35343ad2ant2 1021 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  n  e.  (
ZZ>= `  M ) )
36193ad2antl1 1161 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( M..^ N )  /\  (  seq M
(  x.  ,  F
) `  n ) #  0 )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3721adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( M..^ N )  /\  (  seq M
(  x.  ,  F
) `  n ) #  0 )  /\  (
k  e.  CC  /\  v  e.  CC )
)  ->  ( k  x.  v )  e.  CC )
3835, 36, 37seq3p1 10536 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) )
39 elfzofz 10229 . . . . . . . . . 10  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( M ... N ) )
40 elfzuz 10087 . . . . . . . . . . 11  |-  ( n  e.  ( M ... N )  ->  n  e.  ( ZZ>= `  M )
)
41 eqid 2193 . . . . . . . . . . . . 13  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
421, 16, 173syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ZZ )
4341, 42, 19prodf 11681 . . . . . . . . . . . 12  |-  ( ph  ->  seq M (  x.  ,  F ) : ( ZZ>= `  M ) --> CC )
4443ffvelcdmda 5693 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  (  seq M (  x.  ,  F ) `  n
)  e.  CC )
4540, 44sylan2 286 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M ... N ) )  ->  (  seq M (  x.  ,  F ) `  n
)  e.  CC )
4639, 45sylan2 286 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  x.  ,  F
) `  n )  e.  CC )
47463adant3 1019 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  (  seq M
(  x.  ,  F
) `  n )  e.  CC )
48 fzofzp1 10294 . . . . . . . . . . 11  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( M ... N
) )
49 fveq2 5554 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
5049eleq1d 2262 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  CC  <->  ( F `  ( n  +  1 ) )  e.  CC ) )
5150imbi2d 230 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k )  e.  CC )  <->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) ) )
52 elfzuz 10087 . . . . . . . . . . . . 13  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
5319expcom 116 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( F `  k
)  e.  CC ) )
5452, 53syl 14 . . . . . . . . . . . 12  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k )  e.  CC ) )
5551, 54vtoclga 2826 . . . . . . . . . . 11  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) )  e.  CC ) )
5648, 55syl 14 . . . . . . . . . 10  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) )
5756impcom 125 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) )  e.  CC )
58573adant3 1019 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  ( F `  ( n  +  1
) )  e.  CC )
59 simp3 1001 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  (  seq M
(  x.  ,  F
) `  n ) #  0 )
6049breq1d 4039 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
) #  0  <->  ( F `  ( n  +  1 ) ) #  0 ) )
6160imbi2d 230 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k ) #  0 )  <->  ( ph  ->  ( F `  ( n  +  1 ) ) #  0 ) ) )
6261, 28vtoclga 2826 . . . . . . . . . . 11  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) ) #  0 ) )
6362impcom 125 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  +  1 )  e.  ( M ... N
) )  ->  ( F `  ( n  +  1 ) ) #  0 )
6448, 63sylan2 286 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) ) #  0 )
65643adant3 1019 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  ( F `  ( n  +  1
) ) #  0 )
6647, 58, 59, 65mulap0d 8677 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) #  0 )
6738, 66eqbrtrd 4051 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) #  0 )
68673exp 1204 . . . . 5  |-  ( ph  ->  ( n  e.  ( M..^ N )  -> 
( (  seq M
(  x.  ,  F
) `  n ) #  0  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) #  0 ) ) )
6968com12 30 . . . 4  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  n ) #  0  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) #  0 ) ) )
7069a2d 26 . . 3  |-  ( n  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  x.  ,  F
) `  n ) #  0 )  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) #  0 ) ) )
716, 9, 12, 15, 33, 70fzind2 10306 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  N ) #  0 ) )
723, 71mpcom 36 1  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877   # cap 8600   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074  ..^cfzo 10208    seqcseq 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209  df-seqfrec 10519
This theorem is referenced by:  prodfrecap  11689  prodfdivap  11690
  Copyright terms: Public domain W3C validator