| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodfap0 | Unicode version | ||
| Description: The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.) |
| Ref | Expression |
|---|---|
| prodfap0.1 |
|
| prodfap0.2 |
|
| prodfap0.3 |
|
| Ref | Expression |
|---|---|
| prodfap0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodfap0.1 |
. . 3
| |
| 2 | eluzfz2 10224 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | fveq2 5626 |
. . . . 5
| |
| 5 | 4 | breq1d 4092 |
. . . 4
|
| 6 | 5 | imbi2d 230 |
. . 3
|
| 7 | fveq2 5626 |
. . . . 5
| |
| 8 | 7 | breq1d 4092 |
. . . 4
|
| 9 | 8 | imbi2d 230 |
. . 3
|
| 10 | fveq2 5626 |
. . . . 5
| |
| 11 | 10 | breq1d 4092 |
. . . 4
|
| 12 | 11 | imbi2d 230 |
. . 3
|
| 13 | fveq2 5626 |
. . . . 5
| |
| 14 | 13 | breq1d 4092 |
. . . 4
|
| 15 | 14 | imbi2d 230 |
. . 3
|
| 16 | eluzfz1 10223 |
. . . 4
| |
| 17 | elfzelz 10217 |
. . . . . . . 8
| |
| 18 | 17 | adantl 277 |
. . . . . . 7
|
| 19 | prodfap0.2 |
. . . . . . . 8
| |
| 20 | 19 | adantlr 477 |
. . . . . . 7
|
| 21 | mulcl 8122 |
. . . . . . . 8
| |
| 22 | 21 | adantl 277 |
. . . . . . 7
|
| 23 | 18, 20, 22 | seq3-1 10679 |
. . . . . 6
|
| 24 | fveq2 5626 |
. . . . . . . . . 10
| |
| 25 | 24 | breq1d 4092 |
. . . . . . . . 9
|
| 26 | 25 | imbi2d 230 |
. . . . . . . 8
|
| 27 | prodfap0.3 |
. . . . . . . . 9
| |
| 28 | 27 | expcom 116 |
. . . . . . . 8
|
| 29 | 26, 28 | vtoclga 2867 |
. . . . . . 7
|
| 30 | 29 | impcom 125 |
. . . . . 6
|
| 31 | 23, 30 | eqbrtrd 4104 |
. . . . 5
|
| 32 | 31 | expcom 116 |
. . . 4
|
| 33 | 16, 32 | syl 14 |
. . 3
|
| 34 | elfzouz 10343 |
. . . . . . . . 9
| |
| 35 | 34 | 3ad2ant2 1043 |
. . . . . . . 8
|
| 36 | 19 | 3ad2antl1 1183 |
. . . . . . . 8
|
| 37 | 21 | adantl 277 |
. . . . . . . 8
|
| 38 | 35, 36, 37 | seq3p1 10682 |
. . . . . . 7
|
| 39 | elfzofz 10355 |
. . . . . . . . . 10
| |
| 40 | elfzuz 10213 |
. . . . . . . . . . 11
| |
| 41 | eqid 2229 |
. . . . . . . . . . . . 13
| |
| 42 | 1, 16, 17 | 3syl 17 |
. . . . . . . . . . . . 13
|
| 43 | 41, 42, 19 | prodf 12044 |
. . . . . . . . . . . 12
|
| 44 | 43 | ffvelcdmda 5769 |
. . . . . . . . . . 11
|
| 45 | 40, 44 | sylan2 286 |
. . . . . . . . . 10
|
| 46 | 39, 45 | sylan2 286 |
. . . . . . . . 9
|
| 47 | 46 | 3adant3 1041 |
. . . . . . . 8
|
| 48 | fzofzp1 10428 |
. . . . . . . . . . 11
| |
| 49 | fveq2 5626 |
. . . . . . . . . . . . . 14
| |
| 50 | 49 | eleq1d 2298 |
. . . . . . . . . . . . 13
|
| 51 | 50 | imbi2d 230 |
. . . . . . . . . . . 12
|
| 52 | elfzuz 10213 |
. . . . . . . . . . . . 13
| |
| 53 | 19 | expcom 116 |
. . . . . . . . . . . . 13
|
| 54 | 52, 53 | syl 14 |
. . . . . . . . . . . 12
|
| 55 | 51, 54 | vtoclga 2867 |
. . . . . . . . . . 11
|
| 56 | 48, 55 | syl 14 |
. . . . . . . . . 10
|
| 57 | 56 | impcom 125 |
. . . . . . . . 9
|
| 58 | 57 | 3adant3 1041 |
. . . . . . . 8
|
| 59 | simp3 1023 |
. . . . . . . 8
| |
| 60 | 49 | breq1d 4092 |
. . . . . . . . . . . . 13
|
| 61 | 60 | imbi2d 230 |
. . . . . . . . . . . 12
|
| 62 | 61, 28 | vtoclga 2867 |
. . . . . . . . . . 11
|
| 63 | 62 | impcom 125 |
. . . . . . . . . 10
|
| 64 | 48, 63 | sylan2 286 |
. . . . . . . . 9
|
| 65 | 64 | 3adant3 1041 |
. . . . . . . 8
|
| 66 | 47, 58, 59, 65 | mulap0d 8801 |
. . . . . . 7
|
| 67 | 38, 66 | eqbrtrd 4104 |
. . . . . 6
|
| 68 | 67 | 3exp 1226 |
. . . . 5
|
| 69 | 68 | com12 30 |
. . . 4
|
| 70 | 69 | a2d 26 |
. . 3
|
| 71 | 6, 9, 12, 15, 33, 70 | fzind2 10440 |
. 2
|
| 72 | 3, 71 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-fzo 10335 df-seqfrec 10665 |
| This theorem is referenced by: prodfrecap 12052 prodfdivap 12053 |
| Copyright terms: Public domain | W3C validator |