| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodfap0 | Unicode version | ||
| Description: The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.) |
| Ref | Expression |
|---|---|
| prodfap0.1 |
|
| prodfap0.2 |
|
| prodfap0.3 |
|
| Ref | Expression |
|---|---|
| prodfap0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodfap0.1 |
. . 3
| |
| 2 | eluzfz2 10153 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | fveq2 5575 |
. . . . 5
| |
| 5 | 4 | breq1d 4053 |
. . . 4
|
| 6 | 5 | imbi2d 230 |
. . 3
|
| 7 | fveq2 5575 |
. . . . 5
| |
| 8 | 7 | breq1d 4053 |
. . . 4
|
| 9 | 8 | imbi2d 230 |
. . 3
|
| 10 | fveq2 5575 |
. . . . 5
| |
| 11 | 10 | breq1d 4053 |
. . . 4
|
| 12 | 11 | imbi2d 230 |
. . 3
|
| 13 | fveq2 5575 |
. . . . 5
| |
| 14 | 13 | breq1d 4053 |
. . . 4
|
| 15 | 14 | imbi2d 230 |
. . 3
|
| 16 | eluzfz1 10152 |
. . . 4
| |
| 17 | elfzelz 10146 |
. . . . . . . 8
| |
| 18 | 17 | adantl 277 |
. . . . . . 7
|
| 19 | prodfap0.2 |
. . . . . . . 8
| |
| 20 | 19 | adantlr 477 |
. . . . . . 7
|
| 21 | mulcl 8051 |
. . . . . . . 8
| |
| 22 | 21 | adantl 277 |
. . . . . . 7
|
| 23 | 18, 20, 22 | seq3-1 10605 |
. . . . . 6
|
| 24 | fveq2 5575 |
. . . . . . . . . 10
| |
| 25 | 24 | breq1d 4053 |
. . . . . . . . 9
|
| 26 | 25 | imbi2d 230 |
. . . . . . . 8
|
| 27 | prodfap0.3 |
. . . . . . . . 9
| |
| 28 | 27 | expcom 116 |
. . . . . . . 8
|
| 29 | 26, 28 | vtoclga 2838 |
. . . . . . 7
|
| 30 | 29 | impcom 125 |
. . . . . 6
|
| 31 | 23, 30 | eqbrtrd 4065 |
. . . . 5
|
| 32 | 31 | expcom 116 |
. . . 4
|
| 33 | 16, 32 | syl 14 |
. . 3
|
| 34 | elfzouz 10272 |
. . . . . . . . 9
| |
| 35 | 34 | 3ad2ant2 1021 |
. . . . . . . 8
|
| 36 | 19 | 3ad2antl1 1161 |
. . . . . . . 8
|
| 37 | 21 | adantl 277 |
. . . . . . . 8
|
| 38 | 35, 36, 37 | seq3p1 10608 |
. . . . . . 7
|
| 39 | elfzofz 10284 |
. . . . . . . . . 10
| |
| 40 | elfzuz 10142 |
. . . . . . . . . . 11
| |
| 41 | eqid 2204 |
. . . . . . . . . . . . 13
| |
| 42 | 1, 16, 17 | 3syl 17 |
. . . . . . . . . . . . 13
|
| 43 | 41, 42, 19 | prodf 11791 |
. . . . . . . . . . . 12
|
| 44 | 43 | ffvelcdmda 5714 |
. . . . . . . . . . 11
|
| 45 | 40, 44 | sylan2 286 |
. . . . . . . . . 10
|
| 46 | 39, 45 | sylan2 286 |
. . . . . . . . 9
|
| 47 | 46 | 3adant3 1019 |
. . . . . . . 8
|
| 48 | fzofzp1 10354 |
. . . . . . . . . . 11
| |
| 49 | fveq2 5575 |
. . . . . . . . . . . . . 14
| |
| 50 | 49 | eleq1d 2273 |
. . . . . . . . . . . . 13
|
| 51 | 50 | imbi2d 230 |
. . . . . . . . . . . 12
|
| 52 | elfzuz 10142 |
. . . . . . . . . . . . 13
| |
| 53 | 19 | expcom 116 |
. . . . . . . . . . . . 13
|
| 54 | 52, 53 | syl 14 |
. . . . . . . . . . . 12
|
| 55 | 51, 54 | vtoclga 2838 |
. . . . . . . . . . 11
|
| 56 | 48, 55 | syl 14 |
. . . . . . . . . 10
|
| 57 | 56 | impcom 125 |
. . . . . . . . 9
|
| 58 | 57 | 3adant3 1019 |
. . . . . . . 8
|
| 59 | simp3 1001 |
. . . . . . . 8
| |
| 60 | 49 | breq1d 4053 |
. . . . . . . . . . . . 13
|
| 61 | 60 | imbi2d 230 |
. . . . . . . . . . . 12
|
| 62 | 61, 28 | vtoclga 2838 |
. . . . . . . . . . 11
|
| 63 | 62 | impcom 125 |
. . . . . . . . . 10
|
| 64 | 48, 63 | sylan2 286 |
. . . . . . . . 9
|
| 65 | 64 | 3adant3 1019 |
. . . . . . . 8
|
| 66 | 47, 58, 59, 65 | mulap0d 8730 |
. . . . . . 7
|
| 67 | 38, 66 | eqbrtrd 4065 |
. . . . . 6
|
| 68 | 67 | 3exp 1204 |
. . . . 5
|
| 69 | 68 | com12 30 |
. . . 4
|
| 70 | 69 | a2d 26 |
. . 3
|
| 71 | 6, 9, 12, 15, 33, 70 | fzind2 10366 |
. 2
|
| 72 | 3, 71 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-fzo 10264 df-seqfrec 10591 |
| This theorem is referenced by: prodfrecap 11799 prodfdivap 11800 |
| Copyright terms: Public domain | W3C validator |