Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prodfap0 | Unicode version |
Description: The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.) |
Ref | Expression |
---|---|
prodfap0.1 | |
prodfap0.2 | |
prodfap0.3 | # |
Ref | Expression |
---|---|
prodfap0 | # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodfap0.1 | . . 3 | |
2 | eluzfz2 9967 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | fveq2 5486 | . . . . 5 | |
5 | 4 | breq1d 3992 | . . . 4 # # |
6 | 5 | imbi2d 229 | . . 3 # # |
7 | fveq2 5486 | . . . . 5 | |
8 | 7 | breq1d 3992 | . . . 4 # # |
9 | 8 | imbi2d 229 | . . 3 # # |
10 | fveq2 5486 | . . . . 5 | |
11 | 10 | breq1d 3992 | . . . 4 # # |
12 | 11 | imbi2d 229 | . . 3 # # |
13 | fveq2 5486 | . . . . 5 | |
14 | 13 | breq1d 3992 | . . . 4 # # |
15 | 14 | imbi2d 229 | . . 3 # # |
16 | eluzfz1 9966 | . . . 4 | |
17 | elfzelz 9960 | . . . . . . . 8 | |
18 | 17 | adantl 275 | . . . . . . 7 |
19 | prodfap0.2 | . . . . . . . 8 | |
20 | 19 | adantlr 469 | . . . . . . 7 |
21 | mulcl 7880 | . . . . . . . 8 | |
22 | 21 | adantl 275 | . . . . . . 7 |
23 | 18, 20, 22 | seq3-1 10395 | . . . . . 6 |
24 | fveq2 5486 | . . . . . . . . . 10 | |
25 | 24 | breq1d 3992 | . . . . . . . . 9 # # |
26 | 25 | imbi2d 229 | . . . . . . . 8 # # |
27 | prodfap0.3 | . . . . . . . . 9 # | |
28 | 27 | expcom 115 | . . . . . . . 8 # |
29 | 26, 28 | vtoclga 2792 | . . . . . . 7 # |
30 | 29 | impcom 124 | . . . . . 6 # |
31 | 23, 30 | eqbrtrd 4004 | . . . . 5 # |
32 | 31 | expcom 115 | . . . 4 # |
33 | 16, 32 | syl 14 | . . 3 # |
34 | elfzouz 10086 | . . . . . . . . 9 ..^ | |
35 | 34 | 3ad2ant2 1009 | . . . . . . . 8 ..^ # |
36 | 19 | 3ad2antl1 1149 | . . . . . . . 8 ..^ # |
37 | 21 | adantl 275 | . . . . . . . 8 ..^ # |
38 | 35, 36, 37 | seq3p1 10397 | . . . . . . 7 ..^ # |
39 | elfzofz 10097 | . . . . . . . . . 10 ..^ | |
40 | elfzuz 9956 | . . . . . . . . . . 11 | |
41 | eqid 2165 | . . . . . . . . . . . . 13 | |
42 | 1, 16, 17 | 3syl 17 | . . . . . . . . . . . . 13 |
43 | 41, 42, 19 | prodf 11479 | . . . . . . . . . . . 12 |
44 | 43 | ffvelrnda 5620 | . . . . . . . . . . 11 |
45 | 40, 44 | sylan2 284 | . . . . . . . . . 10 |
46 | 39, 45 | sylan2 284 | . . . . . . . . 9 ..^ |
47 | 46 | 3adant3 1007 | . . . . . . . 8 ..^ # |
48 | fzofzp1 10162 | . . . . . . . . . . 11 ..^ | |
49 | fveq2 5486 | . . . . . . . . . . . . . 14 | |
50 | 49 | eleq1d 2235 | . . . . . . . . . . . . 13 |
51 | 50 | imbi2d 229 | . . . . . . . . . . . 12 |
52 | elfzuz 9956 | . . . . . . . . . . . . 13 | |
53 | 19 | expcom 115 | . . . . . . . . . . . . 13 |
54 | 52, 53 | syl 14 | . . . . . . . . . . . 12 |
55 | 51, 54 | vtoclga 2792 | . . . . . . . . . . 11 |
56 | 48, 55 | syl 14 | . . . . . . . . . 10 ..^ |
57 | 56 | impcom 124 | . . . . . . . . 9 ..^ |
58 | 57 | 3adant3 1007 | . . . . . . . 8 ..^ # |
59 | simp3 989 | . . . . . . . 8 ..^ # # | |
60 | 49 | breq1d 3992 | . . . . . . . . . . . . 13 # # |
61 | 60 | imbi2d 229 | . . . . . . . . . . . 12 # # |
62 | 61, 28 | vtoclga 2792 | . . . . . . . . . . 11 # |
63 | 62 | impcom 124 | . . . . . . . . . 10 # |
64 | 48, 63 | sylan2 284 | . . . . . . . . 9 ..^ # |
65 | 64 | 3adant3 1007 | . . . . . . . 8 ..^ # # |
66 | 47, 58, 59, 65 | mulap0d 8555 | . . . . . . 7 ..^ # # |
67 | 38, 66 | eqbrtrd 4004 | . . . . . 6 ..^ # # |
68 | 67 | 3exp 1192 | . . . . 5 ..^ # # |
69 | 68 | com12 30 | . . . 4 ..^ # # |
70 | 69 | a2d 26 | . . 3 ..^ # # |
71 | 6, 9, 12, 15, 33, 70 | fzind2 10174 | . 2 # |
72 | 3, 71 | mpcom 36 | 1 # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 class class class wbr 3982 cfv 5188 (class class class)co 5842 cc 7751 cc0 7753 c1 7754 caddc 7756 cmul 7758 # cap 8479 cz 9191 cuz 9466 cfz 9944 ..^cfzo 10077 cseq 10380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-fzo 10078 df-seqfrec 10381 |
This theorem is referenced by: prodfrecap 11487 prodfdivap 11488 |
Copyright terms: Public domain | W3C validator |