ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfap0 Unicode version

Theorem prodfap0 11710
Description: The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.)
Hypotheses
Ref Expression
prodfap0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
prodfap0.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
prodfap0.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k ) #  0 )
Assertion
Ref Expression
prodfap0  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem prodfap0
Dummy variables  n  v  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfap0.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10107 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5558 . . . . 5  |-  ( m  =  M  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  M
) )
54breq1d 4043 . . . 4  |-  ( m  =  M  ->  (
(  seq M (  x.  ,  F ) `  m ) #  0  <->  (  seq M (  x.  ,  F ) `  M
) #  0 ) )
65imbi2d 230 . . 3  |-  ( m  =  M  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
) #  0 )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 M ) #  0 ) ) )
7 fveq2 5558 . . . . 5  |-  ( m  =  n  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  n
) )
87breq1d 4043 . . . 4  |-  ( m  =  n  ->  (
(  seq M (  x.  ,  F ) `  m ) #  0  <->  (  seq M (  x.  ,  F ) `  n
) #  0 ) )
98imbi2d 230 . . 3  |-  ( m  =  n  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
) #  0 )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 n ) #  0 ) ) )
10 fveq2 5558 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )
1110breq1d 4043 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  m ) #  0  <->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) #  0 ) )
1211imbi2d 230 . . 3  |-  ( m  =  ( n  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
) #  0 )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( n  + 
1 ) ) #  0 ) ) )
13 fveq2 5558 . . . . 5  |-  ( m  =  N  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  N
) )
1413breq1d 4043 . . . 4  |-  ( m  =  N  ->  (
(  seq M (  x.  ,  F ) `  m ) #  0  <->  (  seq M (  x.  ,  F ) `  N
) #  0 ) )
1514imbi2d 230 . . 3  |-  ( m  =  N  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
) #  0 )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 ) ) )
16 eluzfz1 10106 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
17 elfzelz 10100 . . . . . . . 8  |-  ( M  e.  ( M ... N )  ->  M  e.  ZZ )
1817adantl 277 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  M  e.  ZZ )
19 prodfap0.2 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
2019adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  M  e.  ( M ... N
) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
21 mulcl 8006 . . . . . . . 8  |-  ( ( k  e.  CC  /\  v  e.  CC )  ->  ( k  x.  v
)  e.  CC )
2221adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  M  e.  ( M ... N
) )  /\  (
k  e.  CC  /\  v  e.  CC )
)  ->  ( k  x.  v )  e.  CC )
2318, 20, 22seq3-1 10554 . . . . . 6  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  (  seq M (  x.  ,  F ) `  M
)  =  ( F `
 M ) )
24 fveq2 5558 . . . . . . . . . 10  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2524breq1d 4043 . . . . . . . . 9  |-  ( k  =  M  ->  (
( F `  k
) #  0  <->  ( F `  M ) #  0 ) )
2625imbi2d 230 . . . . . . . 8  |-  ( k  =  M  ->  (
( ph  ->  ( F `
 k ) #  0 )  <->  ( ph  ->  ( F `  M ) #  0 ) ) )
27 prodfap0.3 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k ) #  0 )
2827expcom 116 . . . . . . . 8  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k ) #  0 ) )
2926, 28vtoclga 2830 . . . . . . 7  |-  ( M  e.  ( M ... N )  ->  ( ph  ->  ( F `  M ) #  0 ) )
3029impcom 125 . . . . . 6  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  ( F `  M ) #  0 )
3123, 30eqbrtrd 4055 . . . . 5  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  (  seq M (  x.  ,  F ) `  M
) #  0 )
3231expcom 116 . . . 4  |-  ( M  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  M ) #  0 ) )
3316, 32syl 14 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M (  x.  ,  F ) `
 M ) #  0 ) )
34 elfzouz 10226 . . . . . . . . 9  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( ZZ>= `  M )
)
35343ad2ant2 1021 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  n  e.  (
ZZ>= `  M ) )
36193ad2antl1 1161 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( M..^ N )  /\  (  seq M
(  x.  ,  F
) `  n ) #  0 )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3721adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( M..^ N )  /\  (  seq M
(  x.  ,  F
) `  n ) #  0 )  /\  (
k  e.  CC  /\  v  e.  CC )
)  ->  ( k  x.  v )  e.  CC )
3835, 36, 37seq3p1 10557 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) )
39 elfzofz 10238 . . . . . . . . . 10  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( M ... N ) )
40 elfzuz 10096 . . . . . . . . . . 11  |-  ( n  e.  ( M ... N )  ->  n  e.  ( ZZ>= `  M )
)
41 eqid 2196 . . . . . . . . . . . . 13  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
421, 16, 173syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ZZ )
4341, 42, 19prodf 11703 . . . . . . . . . . . 12  |-  ( ph  ->  seq M (  x.  ,  F ) : ( ZZ>= `  M ) --> CC )
4443ffvelcdmda 5697 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  (  seq M (  x.  ,  F ) `  n
)  e.  CC )
4540, 44sylan2 286 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M ... N ) )  ->  (  seq M (  x.  ,  F ) `  n
)  e.  CC )
4639, 45sylan2 286 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  x.  ,  F
) `  n )  e.  CC )
47463adant3 1019 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  (  seq M
(  x.  ,  F
) `  n )  e.  CC )
48 fzofzp1 10303 . . . . . . . . . . 11  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( M ... N
) )
49 fveq2 5558 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
5049eleq1d 2265 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  CC  <->  ( F `  ( n  +  1 ) )  e.  CC ) )
5150imbi2d 230 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k )  e.  CC )  <->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) ) )
52 elfzuz 10096 . . . . . . . . . . . . 13  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
5319expcom 116 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( F `  k
)  e.  CC ) )
5452, 53syl 14 . . . . . . . . . . . 12  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k )  e.  CC ) )
5551, 54vtoclga 2830 . . . . . . . . . . 11  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) )  e.  CC ) )
5648, 55syl 14 . . . . . . . . . 10  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) )
5756impcom 125 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) )  e.  CC )
58573adant3 1019 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  ( F `  ( n  +  1
) )  e.  CC )
59 simp3 1001 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  (  seq M
(  x.  ,  F
) `  n ) #  0 )
6049breq1d 4043 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
) #  0  <->  ( F `  ( n  +  1 ) ) #  0 ) )
6160imbi2d 230 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k ) #  0 )  <->  ( ph  ->  ( F `  ( n  +  1 ) ) #  0 ) ) )
6261, 28vtoclga 2830 . . . . . . . . . . 11  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) ) #  0 ) )
6362impcom 125 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  +  1 )  e.  ( M ... N
) )  ->  ( F `  ( n  +  1 ) ) #  0 )
6448, 63sylan2 286 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) ) #  0 )
65643adant3 1019 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  ( F `  ( n  +  1
) ) #  0 )
6647, 58, 59, 65mulap0d 8685 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) #  0 )
6738, 66eqbrtrd 4055 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) #  0 )
68673exp 1204 . . . . 5  |-  ( ph  ->  ( n  e.  ( M..^ N )  -> 
( (  seq M
(  x.  ,  F
) `  n ) #  0  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) #  0 ) ) )
6968com12 30 . . . 4  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  n ) #  0  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) #  0 ) ) )
7069a2d 26 . . 3  |-  ( n  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  x.  ,  F
) `  n ) #  0 )  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) #  0 ) ) )
716, 9, 12, 15, 33, 70fzind2 10315 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  N ) #  0 ) )
723, 71mpcom 36 1  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884   # cap 8608   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083  ..^cfzo 10217    seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218  df-seqfrec 10540
This theorem is referenced by:  prodfrecap  11711  prodfdivap  11712
  Copyright terms: Public domain W3C validator