ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfap0 Unicode version

Theorem prodfap0 11552
Description: The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.)
Hypotheses
Ref Expression
prodfap0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
prodfap0.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
prodfap0.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k ) #  0 )
Assertion
Ref Expression
prodfap0  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem prodfap0
Dummy variables  n  v  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfap0.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10031 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5515 . . . . 5  |-  ( m  =  M  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  M
) )
54breq1d 4013 . . . 4  |-  ( m  =  M  ->  (
(  seq M (  x.  ,  F ) `  m ) #  0  <->  (  seq M (  x.  ,  F ) `  M
) #  0 ) )
65imbi2d 230 . . 3  |-  ( m  =  M  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
) #  0 )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 M ) #  0 ) ) )
7 fveq2 5515 . . . . 5  |-  ( m  =  n  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  n
) )
87breq1d 4013 . . . 4  |-  ( m  =  n  ->  (
(  seq M (  x.  ,  F ) `  m ) #  0  <->  (  seq M (  x.  ,  F ) `  n
) #  0 ) )
98imbi2d 230 . . 3  |-  ( m  =  n  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
) #  0 )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 n ) #  0 ) ) )
10 fveq2 5515 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )
1110breq1d 4013 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  m ) #  0  <->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) #  0 ) )
1211imbi2d 230 . . 3  |-  ( m  =  ( n  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
) #  0 )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( n  + 
1 ) ) #  0 ) ) )
13 fveq2 5515 . . . . 5  |-  ( m  =  N  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  N
) )
1413breq1d 4013 . . . 4  |-  ( m  =  N  ->  (
(  seq M (  x.  ,  F ) `  m ) #  0  <->  (  seq M (  x.  ,  F ) `  N
) #  0 ) )
1514imbi2d 230 . . 3  |-  ( m  =  N  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
) #  0 )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 ) ) )
16 eluzfz1 10030 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
17 elfzelz 10024 . . . . . . . 8  |-  ( M  e.  ( M ... N )  ->  M  e.  ZZ )
1817adantl 277 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  M  e.  ZZ )
19 prodfap0.2 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
2019adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  M  e.  ( M ... N
) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
21 mulcl 7937 . . . . . . . 8  |-  ( ( k  e.  CC  /\  v  e.  CC )  ->  ( k  x.  v
)  e.  CC )
2221adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  M  e.  ( M ... N
) )  /\  (
k  e.  CC  /\  v  e.  CC )
)  ->  ( k  x.  v )  e.  CC )
2318, 20, 22seq3-1 10459 . . . . . 6  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  (  seq M (  x.  ,  F ) `  M
)  =  ( F `
 M ) )
24 fveq2 5515 . . . . . . . . . 10  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2524breq1d 4013 . . . . . . . . 9  |-  ( k  =  M  ->  (
( F `  k
) #  0  <->  ( F `  M ) #  0 ) )
2625imbi2d 230 . . . . . . . 8  |-  ( k  =  M  ->  (
( ph  ->  ( F `
 k ) #  0 )  <->  ( ph  ->  ( F `  M ) #  0 ) ) )
27 prodfap0.3 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k ) #  0 )
2827expcom 116 . . . . . . . 8  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k ) #  0 ) )
2926, 28vtoclga 2803 . . . . . . 7  |-  ( M  e.  ( M ... N )  ->  ( ph  ->  ( F `  M ) #  0 ) )
3029impcom 125 . . . . . 6  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  ( F `  M ) #  0 )
3123, 30eqbrtrd 4025 . . . . 5  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  (  seq M (  x.  ,  F ) `  M
) #  0 )
3231expcom 116 . . . 4  |-  ( M  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  M ) #  0 ) )
3316, 32syl 14 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M (  x.  ,  F ) `
 M ) #  0 ) )
34 elfzouz 10150 . . . . . . . . 9  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( ZZ>= `  M )
)
35343ad2ant2 1019 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  n  e.  (
ZZ>= `  M ) )
36193ad2antl1 1159 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( M..^ N )  /\  (  seq M
(  x.  ,  F
) `  n ) #  0 )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3721adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( M..^ N )  /\  (  seq M
(  x.  ,  F
) `  n ) #  0 )  /\  (
k  e.  CC  /\  v  e.  CC )
)  ->  ( k  x.  v )  e.  CC )
3835, 36, 37seq3p1 10461 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) )
39 elfzofz 10161 . . . . . . . . . 10  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( M ... N ) )
40 elfzuz 10020 . . . . . . . . . . 11  |-  ( n  e.  ( M ... N )  ->  n  e.  ( ZZ>= `  M )
)
41 eqid 2177 . . . . . . . . . . . . 13  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
421, 16, 173syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ZZ )
4341, 42, 19prodf 11545 . . . . . . . . . . . 12  |-  ( ph  ->  seq M (  x.  ,  F ) : ( ZZ>= `  M ) --> CC )
4443ffvelcdmda 5651 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  (  seq M (  x.  ,  F ) `  n
)  e.  CC )
4540, 44sylan2 286 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M ... N ) )  ->  (  seq M (  x.  ,  F ) `  n
)  e.  CC )
4639, 45sylan2 286 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  x.  ,  F
) `  n )  e.  CC )
47463adant3 1017 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  (  seq M
(  x.  ,  F
) `  n )  e.  CC )
48 fzofzp1 10226 . . . . . . . . . . 11  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( M ... N
) )
49 fveq2 5515 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
5049eleq1d 2246 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  CC  <->  ( F `  ( n  +  1 ) )  e.  CC ) )
5150imbi2d 230 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k )  e.  CC )  <->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) ) )
52 elfzuz 10020 . . . . . . . . . . . . 13  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
5319expcom 116 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( F `  k
)  e.  CC ) )
5452, 53syl 14 . . . . . . . . . . . 12  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k )  e.  CC ) )
5551, 54vtoclga 2803 . . . . . . . . . . 11  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) )  e.  CC ) )
5648, 55syl 14 . . . . . . . . . 10  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) )
5756impcom 125 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) )  e.  CC )
58573adant3 1017 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  ( F `  ( n  +  1
) )  e.  CC )
59 simp3 999 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  (  seq M
(  x.  ,  F
) `  n ) #  0 )
6049breq1d 4013 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
) #  0  <->  ( F `  ( n  +  1 ) ) #  0 ) )
6160imbi2d 230 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k ) #  0 )  <->  ( ph  ->  ( F `  ( n  +  1 ) ) #  0 ) ) )
6261, 28vtoclga 2803 . . . . . . . . . . 11  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) ) #  0 ) )
6362impcom 125 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  +  1 )  e.  ( M ... N
) )  ->  ( F `  ( n  +  1 ) ) #  0 )
6448, 63sylan2 286 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) ) #  0 )
65643adant3 1017 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  ( F `  ( n  +  1
) ) #  0 )
6647, 58, 59, 65mulap0d 8614 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) #  0 )
6738, 66eqbrtrd 4025 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) #  0 )
68673exp 1202 . . . . 5  |-  ( ph  ->  ( n  e.  ( M..^ N )  -> 
( (  seq M
(  x.  ,  F
) `  n ) #  0  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) #  0 ) ) )
6968com12 30 . . . 4  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  n ) #  0  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) #  0 ) ) )
7069a2d 26 . . 3  |-  ( n  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  x.  ,  F
) `  n ) #  0 )  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) #  0 ) ) )
716, 9, 12, 15, 33, 70fzind2 10238 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  N ) #  0 ) )
723, 71mpcom 36 1  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4003   ` cfv 5216  (class class class)co 5874   CCcc 7808   0cc0 7810   1c1 7811    + caddc 7813    x. cmul 7815   # cap 8537   ZZcz 9252   ZZ>=cuz 9527   ...cfz 10007  ..^cfzo 10141    seqcseq 10444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-inn 8919  df-n0 9176  df-z 9253  df-uz 9528  df-fz 10008  df-fzo 10142  df-seqfrec 10445
This theorem is referenced by:  prodfrecap  11553  prodfdivap  11554
  Copyright terms: Public domain W3C validator