Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prodfap0 | Unicode version |
Description: The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.) |
Ref | Expression |
---|---|
prodfap0.1 | |
prodfap0.2 | |
prodfap0.3 | # |
Ref | Expression |
---|---|
prodfap0 | # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodfap0.1 | . . 3 | |
2 | eluzfz2 9988 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | fveq2 5496 | . . . . 5 | |
5 | 4 | breq1d 3999 | . . . 4 # # |
6 | 5 | imbi2d 229 | . . 3 # # |
7 | fveq2 5496 | . . . . 5 | |
8 | 7 | breq1d 3999 | . . . 4 # # |
9 | 8 | imbi2d 229 | . . 3 # # |
10 | fveq2 5496 | . . . . 5 | |
11 | 10 | breq1d 3999 | . . . 4 # # |
12 | 11 | imbi2d 229 | . . 3 # # |
13 | fveq2 5496 | . . . . 5 | |
14 | 13 | breq1d 3999 | . . . 4 # # |
15 | 14 | imbi2d 229 | . . 3 # # |
16 | eluzfz1 9987 | . . . 4 | |
17 | elfzelz 9981 | . . . . . . . 8 | |
18 | 17 | adantl 275 | . . . . . . 7 |
19 | prodfap0.2 | . . . . . . . 8 | |
20 | 19 | adantlr 474 | . . . . . . 7 |
21 | mulcl 7901 | . . . . . . . 8 | |
22 | 21 | adantl 275 | . . . . . . 7 |
23 | 18, 20, 22 | seq3-1 10416 | . . . . . 6 |
24 | fveq2 5496 | . . . . . . . . . 10 | |
25 | 24 | breq1d 3999 | . . . . . . . . 9 # # |
26 | 25 | imbi2d 229 | . . . . . . . 8 # # |
27 | prodfap0.3 | . . . . . . . . 9 # | |
28 | 27 | expcom 115 | . . . . . . . 8 # |
29 | 26, 28 | vtoclga 2796 | . . . . . . 7 # |
30 | 29 | impcom 124 | . . . . . 6 # |
31 | 23, 30 | eqbrtrd 4011 | . . . . 5 # |
32 | 31 | expcom 115 | . . . 4 # |
33 | 16, 32 | syl 14 | . . 3 # |
34 | elfzouz 10107 | . . . . . . . . 9 ..^ | |
35 | 34 | 3ad2ant2 1014 | . . . . . . . 8 ..^ # |
36 | 19 | 3ad2antl1 1154 | . . . . . . . 8 ..^ # |
37 | 21 | adantl 275 | . . . . . . . 8 ..^ # |
38 | 35, 36, 37 | seq3p1 10418 | . . . . . . 7 ..^ # |
39 | elfzofz 10118 | . . . . . . . . . 10 ..^ | |
40 | elfzuz 9977 | . . . . . . . . . . 11 | |
41 | eqid 2170 | . . . . . . . . . . . . 13 | |
42 | 1, 16, 17 | 3syl 17 | . . . . . . . . . . . . 13 |
43 | 41, 42, 19 | prodf 11501 | . . . . . . . . . . . 12 |
44 | 43 | ffvelrnda 5631 | . . . . . . . . . . 11 |
45 | 40, 44 | sylan2 284 | . . . . . . . . . 10 |
46 | 39, 45 | sylan2 284 | . . . . . . . . 9 ..^ |
47 | 46 | 3adant3 1012 | . . . . . . . 8 ..^ # |
48 | fzofzp1 10183 | . . . . . . . . . . 11 ..^ | |
49 | fveq2 5496 | . . . . . . . . . . . . . 14 | |
50 | 49 | eleq1d 2239 | . . . . . . . . . . . . 13 |
51 | 50 | imbi2d 229 | . . . . . . . . . . . 12 |
52 | elfzuz 9977 | . . . . . . . . . . . . 13 | |
53 | 19 | expcom 115 | . . . . . . . . . . . . 13 |
54 | 52, 53 | syl 14 | . . . . . . . . . . . 12 |
55 | 51, 54 | vtoclga 2796 | . . . . . . . . . . 11 |
56 | 48, 55 | syl 14 | . . . . . . . . . 10 ..^ |
57 | 56 | impcom 124 | . . . . . . . . 9 ..^ |
58 | 57 | 3adant3 1012 | . . . . . . . 8 ..^ # |
59 | simp3 994 | . . . . . . . 8 ..^ # # | |
60 | 49 | breq1d 3999 | . . . . . . . . . . . . 13 # # |
61 | 60 | imbi2d 229 | . . . . . . . . . . . 12 # # |
62 | 61, 28 | vtoclga 2796 | . . . . . . . . . . 11 # |
63 | 62 | impcom 124 | . . . . . . . . . 10 # |
64 | 48, 63 | sylan2 284 | . . . . . . . . 9 ..^ # |
65 | 64 | 3adant3 1012 | . . . . . . . 8 ..^ # # |
66 | 47, 58, 59, 65 | mulap0d 8576 | . . . . . . 7 ..^ # # |
67 | 38, 66 | eqbrtrd 4011 | . . . . . 6 ..^ # # |
68 | 67 | 3exp 1197 | . . . . 5 ..^ # # |
69 | 68 | com12 30 | . . . 4 ..^ # # |
70 | 69 | a2d 26 | . . 3 ..^ # # |
71 | 6, 9, 12, 15, 33, 70 | fzind2 10195 | . 2 # |
72 | 3, 71 | mpcom 36 | 1 # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 class class class wbr 3989 cfv 5198 (class class class)co 5853 cc 7772 cc0 7774 c1 7775 caddc 7777 cmul 7779 # cap 8500 cz 9212 cuz 9487 cfz 9965 ..^cfzo 10098 cseq 10401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-fzo 10099 df-seqfrec 10402 |
This theorem is referenced by: prodfrecap 11509 prodfdivap 11510 |
Copyright terms: Public domain | W3C validator |