ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfap0 Unicode version

Theorem prodfap0 11941
Description: The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.)
Hypotheses
Ref Expression
prodfap0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
prodfap0.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
prodfap0.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k ) #  0 )
Assertion
Ref Expression
prodfap0  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem prodfap0
Dummy variables  n  v  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfap0.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10184 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5594 . . . . 5  |-  ( m  =  M  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  M
) )
54breq1d 4064 . . . 4  |-  ( m  =  M  ->  (
(  seq M (  x.  ,  F ) `  m ) #  0  <->  (  seq M (  x.  ,  F ) `  M
) #  0 ) )
65imbi2d 230 . . 3  |-  ( m  =  M  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
) #  0 )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 M ) #  0 ) ) )
7 fveq2 5594 . . . . 5  |-  ( m  =  n  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  n
) )
87breq1d 4064 . . . 4  |-  ( m  =  n  ->  (
(  seq M (  x.  ,  F ) `  m ) #  0  <->  (  seq M (  x.  ,  F ) `  n
) #  0 ) )
98imbi2d 230 . . 3  |-  ( m  =  n  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
) #  0 )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 n ) #  0 ) ) )
10 fveq2 5594 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )
1110breq1d 4064 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  m ) #  0  <->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) #  0 ) )
1211imbi2d 230 . . 3  |-  ( m  =  ( n  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
) #  0 )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 ( n  + 
1 ) ) #  0 ) ) )
13 fveq2 5594 . . . . 5  |-  ( m  =  N  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  N
) )
1413breq1d 4064 . . . 4  |-  ( m  =  N  ->  (
(  seq M (  x.  ,  F ) `  m ) #  0  <->  (  seq M (  x.  ,  F ) `  N
) #  0 ) )
1514imbi2d 230 . . 3  |-  ( m  =  N  ->  (
( ph  ->  (  seq M (  x.  ,  F ) `  m
) #  0 )  <->  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 ) ) )
16 eluzfz1 10183 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
17 elfzelz 10177 . . . . . . . 8  |-  ( M  e.  ( M ... N )  ->  M  e.  ZZ )
1817adantl 277 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  M  e.  ZZ )
19 prodfap0.2 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
2019adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  M  e.  ( M ... N
) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
21 mulcl 8082 . . . . . . . 8  |-  ( ( k  e.  CC  /\  v  e.  CC )  ->  ( k  x.  v
)  e.  CC )
2221adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  M  e.  ( M ... N
) )  /\  (
k  e.  CC  /\  v  e.  CC )
)  ->  ( k  x.  v )  e.  CC )
2318, 20, 22seq3-1 10639 . . . . . 6  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  (  seq M (  x.  ,  F ) `  M
)  =  ( F `
 M ) )
24 fveq2 5594 . . . . . . . . . 10  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2524breq1d 4064 . . . . . . . . 9  |-  ( k  =  M  ->  (
( F `  k
) #  0  <->  ( F `  M ) #  0 ) )
2625imbi2d 230 . . . . . . . 8  |-  ( k  =  M  ->  (
( ph  ->  ( F `
 k ) #  0 )  <->  ( ph  ->  ( F `  M ) #  0 ) ) )
27 prodfap0.3 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k ) #  0 )
2827expcom 116 . . . . . . . 8  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k ) #  0 ) )
2926, 28vtoclga 2841 . . . . . . 7  |-  ( M  e.  ( M ... N )  ->  ( ph  ->  ( F `  M ) #  0 ) )
3029impcom 125 . . . . . 6  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  ( F `  M ) #  0 )
3123, 30eqbrtrd 4076 . . . . 5  |-  ( (
ph  /\  M  e.  ( M ... N ) )  ->  (  seq M (  x.  ,  F ) `  M
) #  0 )
3231expcom 116 . . . 4  |-  ( M  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  M ) #  0 ) )
3316, 32syl 14 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M (  x.  ,  F ) `
 M ) #  0 ) )
34 elfzouz 10303 . . . . . . . . 9  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( ZZ>= `  M )
)
35343ad2ant2 1022 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  n  e.  (
ZZ>= `  M ) )
36193ad2antl1 1162 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( M..^ N )  /\  (  seq M
(  x.  ,  F
) `  n ) #  0 )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3721adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( M..^ N )  /\  (  seq M
(  x.  ,  F
) `  n ) #  0 )  /\  (
k  e.  CC  /\  v  e.  CC )
)  ->  ( k  x.  v )  e.  CC )
3835, 36, 37seq3p1 10642 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) )
39 elfzofz 10315 . . . . . . . . . 10  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( M ... N ) )
40 elfzuz 10173 . . . . . . . . . . 11  |-  ( n  e.  ( M ... N )  ->  n  e.  ( ZZ>= `  M )
)
41 eqid 2206 . . . . . . . . . . . . 13  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
421, 16, 173syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ZZ )
4341, 42, 19prodf 11934 . . . . . . . . . . . 12  |-  ( ph  ->  seq M (  x.  ,  F ) : ( ZZ>= `  M ) --> CC )
4443ffvelcdmda 5733 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  (  seq M (  x.  ,  F ) `  n
)  e.  CC )
4540, 44sylan2 286 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M ... N ) )  ->  (  seq M (  x.  ,  F ) `  n
)  e.  CC )
4639, 45sylan2 286 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  x.  ,  F
) `  n )  e.  CC )
47463adant3 1020 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  (  seq M
(  x.  ,  F
) `  n )  e.  CC )
48 fzofzp1 10388 . . . . . . . . . . 11  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( M ... N
) )
49 fveq2 5594 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
5049eleq1d 2275 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  CC  <->  ( F `  ( n  +  1 ) )  e.  CC ) )
5150imbi2d 230 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k )  e.  CC )  <->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) ) )
52 elfzuz 10173 . . . . . . . . . . . . 13  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
5319expcom 116 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( F `  k
)  e.  CC ) )
5452, 53syl 14 . . . . . . . . . . . 12  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k )  e.  CC ) )
5551, 54vtoclga 2841 . . . . . . . . . . 11  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) )  e.  CC ) )
5648, 55syl 14 . . . . . . . . . 10  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) )
5756impcom 125 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) )  e.  CC )
58573adant3 1020 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  ( F `  ( n  +  1
) )  e.  CC )
59 simp3 1002 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  (  seq M
(  x.  ,  F
) `  n ) #  0 )
6049breq1d 4064 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
) #  0  <->  ( F `  ( n  +  1 ) ) #  0 ) )
6160imbi2d 230 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k ) #  0 )  <->  ( ph  ->  ( F `  ( n  +  1 ) ) #  0 ) ) )
6261, 28vtoclga 2841 . . . . . . . . . . 11  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) ) #  0 ) )
6362impcom 125 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  +  1 )  e.  ( M ... N
) )  ->  ( F `  ( n  +  1 ) ) #  0 )
6448, 63sylan2 286 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) ) #  0 )
65643adant3 1020 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  ( F `  ( n  +  1
) ) #  0 )
6647, 58, 59, 65mulap0d 8761 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) #  0 )
6738, 66eqbrtrd 4076 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  F ) `  n ) #  0 )  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) #  0 )
68673exp 1205 . . . . 5  |-  ( ph  ->  ( n  e.  ( M..^ N )  -> 
( (  seq M
(  x.  ,  F
) `  n ) #  0  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) #  0 ) ) )
6968com12 30 . . . 4  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  n ) #  0  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) #  0 ) ) )
7069a2d 26 . . 3  |-  ( n  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  x.  ,  F
) `  n ) #  0 )  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) #  0 ) ) )
716, 9, 12, 15, 33, 70fzind2 10400 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  x.  ,  F
) `  N ) #  0 ) )
723, 71mpcom 36 1  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   class class class wbr 4054   ` cfv 5285  (class class class)co 5962   CCcc 7953   0cc0 7955   1c1 7956    + caddc 7958    x. cmul 7960   # cap 8684   ZZcz 9402   ZZ>=cuz 9678   ...cfz 10160  ..^cfzo 10294    seqcseq 10624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-inn 9067  df-n0 9326  df-z 9403  df-uz 9679  df-fz 10161  df-fzo 10295  df-seqfrec 10625
This theorem is referenced by:  prodfrecap  11942  prodfdivap  11943
  Copyright terms: Public domain W3C validator