ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnnsubcl Unicode version

Theorem mulgnnsubcl 12949
Description: Closure of the group multiple (exponentiation) operation in a subsemigroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b  |-  B  =  ( Base `  G
)
mulgnnsubcl.t  |-  .x.  =  (.g
`  G )
mulgnnsubcl.p  |-  .+  =  ( +g  `  G )
mulgnnsubcl.g  |-  ( ph  ->  G  e.  V )
mulgnnsubcl.s  |-  ( ph  ->  S  C_  B )
mulgnnsubcl.c  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
Assertion
Ref Expression
mulgnnsubcl  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Distinct variable groups:    x, y,  .+    x, B, y    x, G, y    x, N, y   
x, S, y    ph, x, y    x,  .x.    x, X, y
Allowed substitution hints:    .x. ( y)    V( x, y)

Proof of Theorem mulgnnsubcl
StepHypRef Expression
1 simp2 998 . . 3  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  N  e.  NN )
2 mulgnnsubcl.s . . . . 5  |-  ( ph  ->  S  C_  B )
323ad2ant1 1018 . . . 4  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  S  C_  B
)
4 simp3 999 . . . 4  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  X  e.  S )
53, 4sseldd 3156 . . 3  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  X  e.  B )
6 mulgnnsubcl.b . . . 4  |-  B  =  ( Base `  G
)
7 mulgnnsubcl.p . . . 4  |-  .+  =  ( +g  `  G )
8 mulgnnsubcl.t . . . 4  |-  .x.  =  (.g
`  G )
9 eqid 2177 . . . 4  |-  seq 1
(  .+  ,  ( NN  X.  { X }
) )  =  seq 1 (  .+  , 
( NN  X.  { X } ) )
106, 7, 8, 9mulgnn 12943 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
111, 5, 10syl2anc 411 . 2  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  ( N  .x.  X )  =  (  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N ) )
12 nnuz 9561 . . . 4  |-  NN  =  ( ZZ>= `  1 )
13 1zzd 9278 . . . 4  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  1  e.  ZZ )
14 fvconst2g 5730 . . . . . 6  |-  ( ( X  e.  S  /\  x  e.  NN )  ->  ( ( NN  X.  { X } ) `  x )  =  X )
154, 14sylan 283 . . . . 5  |-  ( ( ( ph  /\  N  e.  NN  /\  X  e.  S )  /\  x  e.  NN )  ->  (
( NN  X.  { X } ) `  x
)  =  X )
16 simpl3 1002 . . . . 5  |-  ( ( ( ph  /\  N  e.  NN  /\  X  e.  S )  /\  x  e.  NN )  ->  X  e.  S )
1715, 16eqeltrd 2254 . . . 4  |-  ( ( ( ph  /\  N  e.  NN  /\  X  e.  S )  /\  x  e.  NN )  ->  (
( NN  X.  { X } ) `  x
)  e.  S )
18 mulgnnsubcl.c . . . . . 6  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
19183expb 1204 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
20193ad2antl1 1159 . . . 4  |-  ( ( ( ph  /\  N  e.  NN  /\  X  e.  S )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  .+  y )  e.  S
)
2112, 13, 17, 20seqf 10458 . . 3  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  seq 1
(  .+  ,  ( NN  X.  { X }
) ) : NN --> S )
2221, 1ffvelcdmd 5652 . 2  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N )  e.  S
)
2311, 22eqeltrd 2254 1  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148    C_ wss 3129   {csn 3592    X. cxp 4624   ` cfv 5216  (class class class)co 5874   1c1 7811   NNcn 8917    seqcseq 10442   Basecbs 12456   +g cplusg 12530  .gcmg 12937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-inn 8918  df-2 8976  df-n0 9175  df-z 9252  df-uz 9527  df-seqfrec 10443  df-ndx 12459  df-slot 12460  df-base 12462  df-plusg 12543  df-0g 12697  df-minusg 12835  df-mulg 12938
This theorem is referenced by:  mulgnn0subcl  12950  mulgsubcl  12951  mulgnncl  12952
  Copyright terms: Public domain W3C validator