ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnnsubcl Unicode version

Theorem mulgnnsubcl 13204
Description: Closure of the group multiple (exponentiation) operation in a subsemigroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b  |-  B  =  ( Base `  G
)
mulgnnsubcl.t  |-  .x.  =  (.g
`  G )
mulgnnsubcl.p  |-  .+  =  ( +g  `  G )
mulgnnsubcl.g  |-  ( ph  ->  G  e.  V )
mulgnnsubcl.s  |-  ( ph  ->  S  C_  B )
mulgnnsubcl.c  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
Assertion
Ref Expression
mulgnnsubcl  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Distinct variable groups:    x, y,  .+    x, B, y    x, G, y    x, N, y   
x, S, y    ph, x, y    x,  .x.    x, X, y
Allowed substitution hints:    .x. ( y)    V( x, y)

Proof of Theorem mulgnnsubcl
StepHypRef Expression
1 simp2 1000 . . 3  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  N  e.  NN )
2 mulgnnsubcl.s . . . . 5  |-  ( ph  ->  S  C_  B )
323ad2ant1 1020 . . . 4  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  S  C_  B
)
4 simp3 1001 . . . 4  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  X  e.  S )
53, 4sseldd 3180 . . 3  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  X  e.  B )
6 mulgnnsubcl.b . . . 4  |-  B  =  ( Base `  G
)
7 mulgnnsubcl.p . . . 4  |-  .+  =  ( +g  `  G )
8 mulgnnsubcl.t . . . 4  |-  .x.  =  (.g
`  G )
9 eqid 2193 . . . 4  |-  seq 1
(  .+  ,  ( NN  X.  { X }
) )  =  seq 1 (  .+  , 
( NN  X.  { X } ) )
106, 7, 8, 9mulgnn 13196 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
111, 5, 10syl2anc 411 . 2  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  ( N  .x.  X )  =  (  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N ) )
12 nnuz 9628 . . . 4  |-  NN  =  ( ZZ>= `  1 )
13 1zzd 9344 . . . 4  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  1  e.  ZZ )
14 fvconst2g 5772 . . . . . 6  |-  ( ( X  e.  S  /\  x  e.  NN )  ->  ( ( NN  X.  { X } ) `  x )  =  X )
154, 14sylan 283 . . . . 5  |-  ( ( ( ph  /\  N  e.  NN  /\  X  e.  S )  /\  x  e.  NN )  ->  (
( NN  X.  { X } ) `  x
)  =  X )
16 simpl3 1004 . . . . 5  |-  ( ( ( ph  /\  N  e.  NN  /\  X  e.  S )  /\  x  e.  NN )  ->  X  e.  S )
1715, 16eqeltrd 2270 . . . 4  |-  ( ( ( ph  /\  N  e.  NN  /\  X  e.  S )  /\  x  e.  NN )  ->  (
( NN  X.  { X } ) `  x
)  e.  S )
18 mulgnnsubcl.c . . . . . 6  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
19183expb 1206 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
20193ad2antl1 1161 . . . 4  |-  ( ( ( ph  /\  N  e.  NN  /\  X  e.  S )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  .+  y )  e.  S
)
2112, 13, 17, 20seqf 10535 . . 3  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  seq 1
(  .+  ,  ( NN  X.  { X }
) ) : NN --> S )
2221, 1ffvelcdmd 5694 . 2  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N )  e.  S
)
2311, 22eqeltrd 2270 1  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164    C_ wss 3153   {csn 3618    X. cxp 4657   ` cfv 5254  (class class class)co 5918   1c1 7873   NNcn 8982    seqcseq 10518   Basecbs 12618   +g cplusg 12695  .gcmg 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-minusg 13076  df-mulg 13190
This theorem is referenced by:  mulgnn0subcl  13205  mulgsubcl  13206  mulgnncl  13207
  Copyright terms: Public domain W3C validator