ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringidss Unicode version

Theorem ringidss 13525
Description: A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
ringidss.g  |-  M  =  ( (mulGrp `  R
)s 
A )
ringidss.b  |-  B  =  ( Base `  R
)
ringidss.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
ringidss  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  .1.  =  ( 0g `  M ) )

Proof of Theorem ringidss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . 2  |-  ( Base `  M )  =  (
Base `  M )
2 eqid 2193 . 2  |-  ( 0g
`  M )  =  ( 0g `  M
)
3 eqid 2193 . 2  |-  ( +g  `  M )  =  ( +g  `  M )
4 simp3 1001 . . 3  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  .1.  e.  A )
5 ringidss.g . . . . 5  |-  M  =  ( (mulGrp `  R
)s 
A )
65a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  M  =  ( (mulGrp `  R )s  A ) )
7 eqid 2193 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
8 ringidss.b . . . . . 6  |-  B  =  ( Base `  R
)
97, 8mgpbasg 13422 . . . . 5  |-  ( R  e.  Ring  ->  B  =  ( Base `  (mulGrp `  R ) ) )
1093ad2ant1 1020 . . . 4  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  B  =  ( Base `  (mulGrp `  R ) ) )
117mgpex 13421 . . . . 5  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  _V )
12113ad2ant1 1020 . . . 4  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  (mulGrp `  R )  e.  _V )
13 simp2 1000 . . . 4  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  A  C_  B )
146, 10, 12, 13ressbas2d 12686 . . 3  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  A  =  ( Base `  M
) )
154, 14eleqtrd 2272 . 2  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  .1.  e.  ( Base `  M
) )
1614, 13eqsstrrd 3216 . . . 4  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  ( Base `  M )  C_  B )
1716sselda 3179 . . 3  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  ( Base `  M ) )  -> 
y  e.  B )
18 eqid 2193 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
197, 18mgpplusgg 13420 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( +g  `  (mulGrp `  R ) ) )
20193ad2ant1 1020 . . . . . . 7  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
21 basfn 12676 . . . . . . . . . 10  |-  Base  Fn  _V
22 simp1 999 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  R  e.  Ring )
2322elexd 2773 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  R  e.  _V )
24 funfvex 5571 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2524funfni 5354 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2621, 23, 25sylancr 414 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  ( Base `  R )  e. 
_V )
278, 26eqeltrid 2280 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  B  e.  _V )
2827, 13ssexd 4169 . . . . . . 7  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  A  e.  _V )
296, 20, 28, 12ressplusgd 12746 . . . . . 6  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  ( .r `  R )  =  ( +g  `  M
) )
3029adantr 276 . . . . 5  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  ( .r `  R
)  =  ( +g  `  M ) )
3130oveqd 5935 . . . 4  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  (  .1.  ( .r
`  R ) y )  =  (  .1.  ( +g  `  M
) y ) )
32 ringidss.u . . . . . 6  |-  .1.  =  ( 1r `  R )
338, 18, 32ringlidm 13519 . . . . 5  |-  ( ( R  e.  Ring  /\  y  e.  B )  ->  (  .1.  ( .r `  R
) y )  =  y )
34333ad2antl1 1161 . . . 4  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  (  .1.  ( .r
`  R ) y )  =  y )
3531, 34eqtr3d 2228 . . 3  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  (  .1.  ( +g  `  M ) y )  =  y )
3617, 35syldan 282 . 2  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  ( Base `  M ) )  -> 
(  .1.  ( +g  `  M ) y )  =  y )
3730oveqd 5935 . . . 4  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  ( y ( .r
`  R )  .1.  )  =  ( y ( +g  `  M
)  .1.  ) )
388, 18, 32ringridm 13520 . . . . 5  |-  ( ( R  e.  Ring  /\  y  e.  B )  ->  (
y ( .r `  R )  .1.  )  =  y )
39383ad2antl1 1161 . . . 4  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  ( y ( .r
`  R )  .1.  )  =  y )
4037, 39eqtr3d 2228 . . 3  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  ( y ( +g  `  M )  .1.  )  =  y )
4117, 40syldan 282 . 2  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  ( Base `  M ) )  -> 
( y ( +g  `  M )  .1.  )  =  y )
421, 2, 3, 15, 36, 41ismgmid2 12963 1  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  .1.  =  ( 0g `  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3153    Fn wfn 5249   ` cfv 5254  (class class class)co 5918   Basecbs 12618   ↾s cress 12619   +g cplusg 12695   .rcmulr 12696   0gc0g 12867  mulGrpcmgp 13416   1rcur 13455   Ringcrg 13492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mgp 13417  df-ur 13456  df-ring 13494
This theorem is referenced by:  unitgrpid  13614
  Copyright terms: Public domain W3C validator