ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringidss Unicode version

Theorem ringidss 13906
Description: A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
ringidss.g  |-  M  =  ( (mulGrp `  R
)s 
A )
ringidss.b  |-  B  =  ( Base `  R
)
ringidss.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
ringidss  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  .1.  =  ( 0g `  M ) )

Proof of Theorem ringidss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . 2  |-  ( Base `  M )  =  (
Base `  M )
2 eqid 2207 . 2  |-  ( 0g
`  M )  =  ( 0g `  M
)
3 eqid 2207 . 2  |-  ( +g  `  M )  =  ( +g  `  M )
4 simp3 1002 . . 3  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  .1.  e.  A )
5 ringidss.g . . . . 5  |-  M  =  ( (mulGrp `  R
)s 
A )
65a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  M  =  ( (mulGrp `  R )s  A ) )
7 eqid 2207 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
8 ringidss.b . . . . . 6  |-  B  =  ( Base `  R
)
97, 8mgpbasg 13803 . . . . 5  |-  ( R  e.  Ring  ->  B  =  ( Base `  (mulGrp `  R ) ) )
1093ad2ant1 1021 . . . 4  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  B  =  ( Base `  (mulGrp `  R ) ) )
117mgpex 13802 . . . . 5  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  _V )
12113ad2ant1 1021 . . . 4  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  (mulGrp `  R )  e.  _V )
13 simp2 1001 . . . 4  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  A  C_  B )
146, 10, 12, 13ressbas2d 13015 . . 3  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  A  =  ( Base `  M
) )
154, 14eleqtrd 2286 . 2  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  .1.  e.  ( Base `  M
) )
1614, 13eqsstrrd 3238 . . . 4  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  ( Base `  M )  C_  B )
1716sselda 3201 . . 3  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  ( Base `  M ) )  -> 
y  e.  B )
18 eqid 2207 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
197, 18mgpplusgg 13801 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( +g  `  (mulGrp `  R ) ) )
20193ad2ant1 1021 . . . . . . 7  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
21 basfn 13005 . . . . . . . . . 10  |-  Base  Fn  _V
22 simp1 1000 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  R  e.  Ring )
2322elexd 2790 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  R  e.  _V )
24 funfvex 5616 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2524funfni 5395 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2621, 23, 25sylancr 414 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  ( Base `  R )  e. 
_V )
278, 26eqeltrid 2294 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  B  e.  _V )
2827, 13ssexd 4200 . . . . . . 7  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  A  e.  _V )
296, 20, 28, 12ressplusgd 13076 . . . . . 6  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  ( .r `  R )  =  ( +g  `  M
) )
3029adantr 276 . . . . 5  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  ( .r `  R
)  =  ( +g  `  M ) )
3130oveqd 5984 . . . 4  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  (  .1.  ( .r
`  R ) y )  =  (  .1.  ( +g  `  M
) y ) )
32 ringidss.u . . . . . 6  |-  .1.  =  ( 1r `  R )
338, 18, 32ringlidm 13900 . . . . 5  |-  ( ( R  e.  Ring  /\  y  e.  B )  ->  (  .1.  ( .r `  R
) y )  =  y )
34333ad2antl1 1162 . . . 4  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  (  .1.  ( .r
`  R ) y )  =  y )
3531, 34eqtr3d 2242 . . 3  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  (  .1.  ( +g  `  M ) y )  =  y )
3617, 35syldan 282 . 2  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  ( Base `  M ) )  -> 
(  .1.  ( +g  `  M ) y )  =  y )
3730oveqd 5984 . . . 4  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  ( y ( .r
`  R )  .1.  )  =  ( y ( +g  `  M
)  .1.  ) )
388, 18, 32ringridm 13901 . . . . 5  |-  ( ( R  e.  Ring  /\  y  e.  B )  ->  (
y ( .r `  R )  .1.  )  =  y )
39383ad2antl1 1162 . . . 4  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  ( y ( .r
`  R )  .1.  )  =  y )
4037, 39eqtr3d 2242 . . 3  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  ( y ( +g  `  M )  .1.  )  =  y )
4117, 40syldan 282 . 2  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  ( Base `  M ) )  -> 
( y ( +g  `  M )  .1.  )  =  y )
421, 2, 3, 15, 36, 41ismgmid2 13327 1  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  .1.  =  ( 0g `  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   _Vcvv 2776    C_ wss 3174    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   Basecbs 12947   ↾s cress 12948   +g cplusg 13024   .rcmulr 13025   0gc0g 13203  mulGrpcmgp 13797   1rcur 13836   Ringcrg 13873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-mgp 13798  df-ur 13837  df-ring 13875
This theorem is referenced by:  unitgrpid  13995
  Copyright terms: Public domain W3C validator