ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringidss Unicode version

Theorem ringidss 13987
Description: A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
ringidss.g  |-  M  =  ( (mulGrp `  R
)s 
A )
ringidss.b  |-  B  =  ( Base `  R
)
ringidss.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
ringidss  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  .1.  =  ( 0g `  M ) )

Proof of Theorem ringidss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . 2  |-  ( Base `  M )  =  (
Base `  M )
2 eqid 2229 . 2  |-  ( 0g
`  M )  =  ( 0g `  M
)
3 eqid 2229 . 2  |-  ( +g  `  M )  =  ( +g  `  M )
4 simp3 1023 . . 3  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  .1.  e.  A )
5 ringidss.g . . . . 5  |-  M  =  ( (mulGrp `  R
)s 
A )
65a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  M  =  ( (mulGrp `  R )s  A ) )
7 eqid 2229 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
8 ringidss.b . . . . . 6  |-  B  =  ( Base `  R
)
97, 8mgpbasg 13884 . . . . 5  |-  ( R  e.  Ring  ->  B  =  ( Base `  (mulGrp `  R ) ) )
1093ad2ant1 1042 . . . 4  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  B  =  ( Base `  (mulGrp `  R ) ) )
117mgpex 13883 . . . . 5  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  _V )
12113ad2ant1 1042 . . . 4  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  (mulGrp `  R )  e.  _V )
13 simp2 1022 . . . 4  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  A  C_  B )
146, 10, 12, 13ressbas2d 13096 . . 3  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  A  =  ( Base `  M
) )
154, 14eleqtrd 2308 . 2  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  .1.  e.  ( Base `  M
) )
1614, 13eqsstrrd 3261 . . . 4  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  ( Base `  M )  C_  B )
1716sselda 3224 . . 3  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  ( Base `  M ) )  -> 
y  e.  B )
18 eqid 2229 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
197, 18mgpplusgg 13882 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( +g  `  (mulGrp `  R ) ) )
20193ad2ant1 1042 . . . . . . 7  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
21 basfn 13086 . . . . . . . . . 10  |-  Base  Fn  _V
22 simp1 1021 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  R  e.  Ring )
2322elexd 2813 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  R  e.  _V )
24 funfvex 5643 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2524funfni 5422 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2621, 23, 25sylancr 414 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  ( Base `  R )  e. 
_V )
278, 26eqeltrid 2316 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  B  e.  _V )
2827, 13ssexd 4223 . . . . . . 7  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  A  e.  _V )
296, 20, 28, 12ressplusgd 13157 . . . . . 6  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  ( .r `  R )  =  ( +g  `  M
) )
3029adantr 276 . . . . 5  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  ( .r `  R
)  =  ( +g  `  M ) )
3130oveqd 6017 . . . 4  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  (  .1.  ( .r
`  R ) y )  =  (  .1.  ( +g  `  M
) y ) )
32 ringidss.u . . . . . 6  |-  .1.  =  ( 1r `  R )
338, 18, 32ringlidm 13981 . . . . 5  |-  ( ( R  e.  Ring  /\  y  e.  B )  ->  (  .1.  ( .r `  R
) y )  =  y )
34333ad2antl1 1183 . . . 4  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  (  .1.  ( .r
`  R ) y )  =  y )
3531, 34eqtr3d 2264 . . 3  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  (  .1.  ( +g  `  M ) y )  =  y )
3617, 35syldan 282 . 2  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  ( Base `  M ) )  -> 
(  .1.  ( +g  `  M ) y )  =  y )
3730oveqd 6017 . . . 4  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  ( y ( .r
`  R )  .1.  )  =  ( y ( +g  `  M
)  .1.  ) )
388, 18, 32ringridm 13982 . . . . 5  |-  ( ( R  e.  Ring  /\  y  e.  B )  ->  (
y ( .r `  R )  .1.  )  =  y )
39383ad2antl1 1183 . . . 4  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  ( y ( .r
`  R )  .1.  )  =  y )
4037, 39eqtr3d 2264 . . 3  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  B )  ->  ( y ( +g  `  M )  .1.  )  =  y )
4117, 40syldan 282 . 2  |-  ( ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  /\  y  e.  ( Base `  M ) )  -> 
( y ( +g  `  M )  .1.  )  =  y )
421, 2, 3, 15, 36, 41ismgmid2 13408 1  |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  .1.  =  ( 0g `  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197    Fn wfn 5312   ` cfv 5317  (class class class)co 6000   Basecbs 13027   ↾s cress 13028   +g cplusg 13105   .rcmulr 13106   0gc0g 13284  mulGrpcmgp 13878   1rcur 13917   Ringcrg 13954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mgp 13879  df-ur 13918  df-ring 13956
This theorem is referenced by:  unitgrpid  14076
  Copyright terms: Public domain W3C validator