| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusaddvallemg | Unicode version | ||
| Description: Value of an operation defined on a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| qusaddf.u |
|
| qusaddf.v |
|
| qusaddf.r |
|
| qusaddf.z |
|
| qusaddf.e |
|
| qusaddf.c |
|
| qusaddflem.f |
|
| qusaddflem.g |
|
| qusaddflemg.x |
|
| Ref | Expression |
|---|---|
| qusaddvallemg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusaddf.u |
. . . 4
| |
| 2 | qusaddf.v |
. . . 4
| |
| 3 | qusaddflem.f |
. . . 4
| |
| 4 | qusaddf.r |
. . . . 5
| |
| 5 | qusaddf.z |
. . . . . . 7
| |
| 6 | basfn 13005 |
. . . . . . . 8
| |
| 7 | elex 2788 |
. . . . . . . 8
| |
| 8 | funfvex 5616 |
. . . . . . . . 9
| |
| 9 | 8 | funfni 5395 |
. . . . . . . 8
|
| 10 | 6, 7, 9 | sylancr 414 |
. . . . . . 7
|
| 11 | 5, 10 | syl 14 |
. . . . . 6
|
| 12 | 2, 11 | eqeltrd 2284 |
. . . . 5
|
| 13 | erex 6667 |
. . . . 5
| |
| 14 | 4, 12, 13 | sylc 62 |
. . . 4
|
| 15 | 1, 2, 3, 14, 5 | quslem 13271 |
. . 3
|
| 16 | qusaddf.c |
. . . 4
| |
| 17 | qusaddf.e |
. . . 4
| |
| 18 | 4, 12, 3, 16, 17 | ercpbl 13278 |
. . 3
|
| 19 | qusaddflem.g |
. . 3
| |
| 20 | qusaddflemg.x |
. . 3
| |
| 21 | 15, 18, 19, 12, 20 | imasaddvallemg 13262 |
. 2
|
| 22 | 4 | 3ad2ant1 1021 |
. . . 4
|
| 23 | 12 | 3ad2ant1 1021 |
. . . 4
|
| 24 | simp2 1001 |
. . . 4
| |
| 25 | 22, 23, 3, 24 | divsfvalg 13276 |
. . 3
|
| 26 | simp3 1002 |
. . . 4
| |
| 27 | 22, 23, 3, 26 | divsfvalg 13276 |
. . 3
|
| 28 | 25, 27 | oveq12d 5985 |
. 2
|
| 29 | 16 | 3ad2antl1 1162 |
. . . 4
|
| 30 | 29, 24, 26 | caovcld 6123 |
. . 3
|
| 31 | 22, 23, 3, 30 | divsfvalg 13276 |
. 2
|
| 32 | 21, 28, 31 | 3eqtr3d 2248 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-er 6643 df-ec 6645 df-qs 6649 df-inn 9072 df-ndx 12950 df-slot 12951 df-base 12953 |
| This theorem is referenced by: qusaddval 13282 qusmulval 13284 |
| Copyright terms: Public domain | W3C validator |