ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusaddvallemg Unicode version

Theorem qusaddvallemg 13366
Description: Value of an operation defined on a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
qusaddf.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusaddf.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusaddf.r  |-  ( ph  ->  .~  Er  V )
qusaddf.z  |-  ( ph  ->  R  e.  Z )
qusaddf.e  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
qusaddf.c  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
qusaddflem.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
qusaddflem.g  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
qusaddflemg.x  |-  ( ph  ->  .x.  e.  W )
Assertion
Ref Expression
qusaddvallemg  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )
Distinct variable groups:    a, b, p, q, x,  .~    F, a, b, p, q    ph, a,
b, p, q, x    V, a, b, p, q, x    R, p, q, x    .x. , p, q, x    X, p, q, x    .xb , a, b, p, q    Y, p, q, x
Allowed substitution hints:    R( a, b)    .xb (
x)    .x. ( a, b)    U( x, q, p, a, b)    F( x)    W( x, q, p, a, b)    X( a, b)    Y( a, b)    Z( x, q, p, a, b)

Proof of Theorem qusaddvallemg
StepHypRef Expression
1 qusaddf.u . . . 4  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 qusaddf.v . . . 4  |-  ( ph  ->  V  =  ( Base `  R ) )
3 qusaddflem.f . . . 4  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
4 qusaddf.r . . . . 5  |-  ( ph  ->  .~  Er  V )
5 qusaddf.z . . . . . . 7  |-  ( ph  ->  R  e.  Z )
6 basfn 13091 . . . . . . . 8  |-  Base  Fn  _V
7 elex 2811 . . . . . . . 8  |-  ( R  e.  Z  ->  R  e.  _V )
8 funfvex 5644 . . . . . . . . 9  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
98funfni 5423 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
106, 7, 9sylancr 414 . . . . . . 7  |-  ( R  e.  Z  ->  ( Base `  R )  e. 
_V )
115, 10syl 14 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  e.  _V )
122, 11eqeltrd 2306 . . . . 5  |-  ( ph  ->  V  e.  _V )
13 erex 6704 . . . . 5  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
144, 12, 13sylc 62 . . . 4  |-  ( ph  ->  .~  e.  _V )
151, 2, 3, 14, 5quslem 13357 . . 3  |-  ( ph  ->  F : V -onto-> ( V /.  .~  ) )
16 qusaddf.c . . . 4  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
17 qusaddf.e . . . 4  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
184, 12, 3, 16, 17ercpbl 13364 . . 3  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .x.  b )
)  =  ( F `
 ( p  .x.  q ) ) ) )
19 qusaddflem.g . . 3  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
20 qusaddflemg.x . . 3  |-  ( ph  ->  .x.  e.  W )
2115, 18, 19, 12, 20imasaddvallemg 13348 . 2  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( ( F `  X )  .xb  ( F `  Y
) )  =  ( F `  ( X 
.x.  Y ) ) )
2243ad2ant1 1042 . . . 4  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  .~  Er  V
)
23123ad2ant1 1042 . . . 4  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  V  e.  _V )
24 simp2 1022 . . . 4  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  X  e.  V )
2522, 23, 3, 24divsfvalg 13362 . . 3  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( F `  X )  =  [ X ]  .~  )
26 simp3 1023 . . . 4  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  Y  e.  V )
2722, 23, 3, 26divsfvalg 13362 . . 3  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( F `  Y )  =  [ Y ]  .~  )
2825, 27oveq12d 6019 . 2  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( ( F `  X )  .xb  ( F `  Y
) )  =  ( [ X ]  .~  .xb 
[ Y ]  .~  ) )
29163ad2antl1 1183 . . . 4  |-  ( ( ( ph  /\  X  e.  V  /\  Y  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( p  .x.  q )  e.  V
)
3029, 24, 26caovcld 6159 . . 3  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( X  .x.  Y )  e.  V
)
3122, 23, 3, 30divsfvalg 13362 . 2  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( F `  ( X  .x.  Y
) )  =  [
( X  .x.  Y
) ]  .~  )
3221, 28, 313eqtr3d 2270 1  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666   <.cop 3669   U_ciun 3965   class class class wbr 4083    |-> cmpt 4145    Fn wfn 5313   ` cfv 5318  (class class class)co 6001    Er wer 6677   [cec 6678   /.cqs 6679   Basecbs 13032    /.s cqus 13333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-er 6680  df-ec 6682  df-qs 6686  df-inn 9111  df-ndx 13035  df-slot 13036  df-base 13038
This theorem is referenced by:  qusaddval  13368  qusmulval  13370
  Copyright terms: Public domain W3C validator