ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusaddvallemg Unicode version

Theorem qusaddvallemg 12752
Description: Value of an operation defined on a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
qusaddf.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusaddf.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusaddf.r  |-  ( ph  ->  .~  Er  V )
qusaddf.z  |-  ( ph  ->  R  e.  Z )
qusaddf.e  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
qusaddf.c  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
qusaddflem.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
qusaddflem.g  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
qusaddflemg.x  |-  ( ph  ->  .x.  e.  W )
Assertion
Ref Expression
qusaddvallemg  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )
Distinct variable groups:    a, b, p, q, x,  .~    F, a, b, p, q    ph, a,
b, p, q, x    V, a, b, p, q, x    R, p, q, x    .x. , p, q, x    X, p, q, x    .xb , a, b, p, q    Y, p, q, x
Allowed substitution hints:    R( a, b)    .xb (
x)    .x. ( a, b)    U( x, q, p, a, b)    F( x)    W( x, q, p, a, b)    X( a, b)    Y( a, b)    Z( x, q, p, a, b)

Proof of Theorem qusaddvallemg
StepHypRef Expression
1 qusaddf.u . . . 4  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 qusaddf.v . . . 4  |-  ( ph  ->  V  =  ( Base `  R ) )
3 qusaddflem.f . . . 4  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
4 qusaddf.r . . . . 5  |-  ( ph  ->  .~  Er  V )
5 qusaddf.z . . . . . . 7  |-  ( ph  ->  R  e.  Z )
6 basfn 12520 . . . . . . . 8  |-  Base  Fn  _V
7 elex 2749 . . . . . . . 8  |-  ( R  e.  Z  ->  R  e.  _V )
8 funfvex 5533 . . . . . . . . 9  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
98funfni 5317 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
106, 7, 9sylancr 414 . . . . . . 7  |-  ( R  e.  Z  ->  ( Base `  R )  e. 
_V )
115, 10syl 14 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  e.  _V )
122, 11eqeltrd 2254 . . . . 5  |-  ( ph  ->  V  e.  _V )
13 erex 6559 . . . . 5  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
144, 12, 13sylc 62 . . . 4  |-  ( ph  ->  .~  e.  _V )
151, 2, 3, 14, 5quslem 12745 . . 3  |-  ( ph  ->  F : V -onto-> ( V /.  .~  ) )
16 qusaddf.c . . . 4  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
17 qusaddf.e . . . 4  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
184, 12, 3, 16, 17ercpbl 12750 . . 3  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .x.  b )
)  =  ( F `
 ( p  .x.  q ) ) ) )
19 qusaddflem.g . . 3  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
20 qusaddflemg.x . . 3  |-  ( ph  ->  .x.  e.  W )
2115, 18, 19, 12, 20imasaddvallemg 12736 . 2  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( ( F `  X )  .xb  ( F `  Y
) )  =  ( F `  ( X 
.x.  Y ) ) )
2243ad2ant1 1018 . . . 4  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  .~  Er  V
)
23123ad2ant1 1018 . . . 4  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  V  e.  _V )
24 simp2 998 . . . 4  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  X  e.  V )
2522, 23, 3, 24divsfvalg 12748 . . 3  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( F `  X )  =  [ X ]  .~  )
26 simp3 999 . . . 4  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  Y  e.  V )
2722, 23, 3, 26divsfvalg 12748 . . 3  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( F `  Y )  =  [ Y ]  .~  )
2825, 27oveq12d 5893 . 2  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( ( F `  X )  .xb  ( F `  Y
) )  =  ( [ X ]  .~  .xb 
[ Y ]  .~  ) )
29163ad2antl1 1159 . . . 4  |-  ( ( ( ph  /\  X  e.  V  /\  Y  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( p  .x.  q )  e.  V
)
3029, 24, 26caovcld 6028 . . 3  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( X  .x.  Y )  e.  V
)
3122, 23, 3, 30divsfvalg 12748 . 2  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( F `  ( X  .x.  Y
) )  =  [
( X  .x.  Y
) ]  .~  )
3221, 28, 313eqtr3d 2218 1  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   _Vcvv 2738   {csn 3593   <.cop 3596   U_ciun 3887   class class class wbr 4004    |-> cmpt 4065    Fn wfn 5212   ` cfv 5217  (class class class)co 5875    Er wer 6532   [cec 6533   /.cqs 6534   Basecbs 12462    /.s cqus 12721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-er 6535  df-ec 6537  df-qs 6541  df-inn 8920  df-ndx 12465  df-slot 12466  df-base 12468
This theorem is referenced by:  qusaddval  12754  qusmulval  12756
  Copyright terms: Public domain W3C validator